The specific character of distribution of mononucleotide tracts and mixed W or S tracts in human Y and 22 chromosomes was analysed by comparative genomic approaches. It was found that in regulatory regions of Y chromosome anomalously high density of S (G/C)-tracts consisting of relatively short sequences (up to 6 base pairs) was observed. In primary structure of coding regions (exons) of 22 chromosome only a small redundancy of S- tracts was discovered. Previously in our papers we pointed to the non-trivial, increased ability of G/C pairs to a spontaneous change in the geometry of its complementary H-binding (because of the different dimensions of the hidden structural polymorphism of Watson-Crick G/C and A/T base pairs) in comparison with A/T pairs. In this case, revealed high density of S(G/C)-tracts in intergenic regions of Y chromosome indicated to possibility of increasing in the number of events of spontaneous complementarity lesions in this areas in comparison with similar events in the autosomic 22 chromosome. That is, in this way an abnormally high frequency of spontaneous point mutations in the Y chromosome compared with the frequency of similar mutations in other human chromosomes can be initiated. This is observed experimentally.
DNA, chromosome structure, redundancy of S-tracts, structural polymorphism of Watson-Crick base pairs, frequency of spontaneous mutations
1. Ali S., Hasnain S.E. Genomics of the human Y-chromosome-1. Association with male infertility. Gene, 2003, vol. 4 (321), pp. 25-37.
2. Lindblad-Toh K. [et al.] Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 2005, vol. 438, pp. 803-819.
3. Graves J.A.M. Sex Chromosome Specialization and Degeneration in Mammals. Cell, 2006, vol. 124 (5), pp. 901-914.
4. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, vol. 420, pp. 520-562.
5. Wen-Hsiung Li [et al.] Male-driven evolution. Current Opinion in Genetics & Development, 2002, vol. 12, pp. 650-656.
6. Ballantyne K.N. [et al.] Mutability of Y-Chromosomal Microsatellites: Rates, Characteristics, Molecular Bases, and Forensic Implications. The American Journal of Human Genetics, 2010, vol. 87, pp. 341-353.
7. Lynch M., Sung W., Morris K., Coffey N., Landry C.R., Dopman E.B., Dickinson W.J., Okamoto K., Kulkarni S., Hartl D.L., Thomas W.K. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. USA, 2008, vol. 105 (27), pp. 9272-9277.
8. Dillon M.M., Sung W., Lynch M., Cooper V.S. The Rate and Molecular Spectrum of Spontaneous Mutations in the GC-Rich Multichromosome Genome of Burkholderia cenocepacia. Genetics, 2015, vol. 200, pp. 935-946.
9. Mehrotra S., Goyal V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics Proteomics Bioinformatics, 2014, vol. 12 (4), pp. 164-171.
10. Forster H., Röhl A., Lünnemann P., Brinkmann C., Zerjal T., Tyler-Smith C., Brinkmann B. A Short Tandem Repeat-Based Phylogeny for the Human Y Chromosome. The American Journal of Human Genetics, 2000, vol. 67 (1), pp. 182-196.
11. Jobling M.A., Tyler-Smith C. Y-chromosomal SNP haplotype diversity in forensic analysis. Forensic Science International, 2001, vol. 118, pp. 158-162.
12. Jobling M.A., Tyler-Smith C. The human Y chromosome: an evolutionary marker comes of age”. Nature Reviews. Genetics, 2003, vol. 4, pp.598-612.
13. Subirana J.A., Messeguer X. The distribution of alternating AT sequences in eukaryotic genomes suggests a role in homologous chromosome recognition in meiosis. J. Theor. Biol., 2011, vol. 283, pp. 28-34.
14. Marx K.A., Zhou Y., Kishawi I.Q. Evidence for Long Poly(dA).Poly(dT) Tracts in D.Discoideum DNA at High Frequencies and Their Preferential Avoidance of Nucleosomal DNA Core Regions. J. Biomol. Struct. & Dyn., 2006, vol. 23, pp. 429-446.
15. Subirana J.A., Messeguer X. The most frequent short sequences in non-coding DNA. Nucleic Acids Res., 2010, vol. 38 (4), pp. 1172-1180.
16. Yagil G. The frequency of two-base tracts in eukaryotic genomes. J. Mol. Evol., 1993, vol. 37, pp. 123-130.
17. Yagil G. DNA tracts composed of only two bases concentrate in gene promoters. Genomics, 2006, vol. 87, pp. 591-597.
18. Shomer D., Yagil G. Long W tracts are over-represented in the E.coli and H.influenzae genomes. Nucl.AcidsRes., 1999, vol. 27, pp. 4491-4480.
19. Kiselev C.C., Komarov V.M., Masulis I.S., Ozolin' O.N. Raspredelenie mononukleotidnyh povtorov v bakterial'nyh hromosomah. A/T-treki preobladayut nad G/C-trekami. Komp'yut. issledov. modelir., 2010, t. 2, c. 183-187. [Kiselev S.S., Komarov V.M., Masulis I.S., Ozoline O.N. Distribution of mononucleotide repeats in bacterial chromosomes. Redundancy of A/T-tracts under G/C-tracts. Computer researches & modelling, 2010, vol. 2, pp. 183-187. (In Russ.)]
20. Piazza F., Lio P. Statistical analysis of simple repeats in the human genome. Physica A, 2005, vol. 347, pp. 472-488.
21. Dechering K.J., Cuelenaere K., Konings R.N.H., Leunissen J.A.M. Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. Nucleic Acids Research, 1998, vol. 26, pp. 4056-4062.
22. Samchenko A.A., Kiselev S.S., Kabanov A.V., Kondrat'ev M.S., Komarov V.M. O prirode dominirovaniya oligomernyh (dA:dT)n trekov v strukture genomov eukariot. Biofizika, 2016, t. 6, s. 1045-1058. [Samchenko A.A., Kiselev S.S., Kabanov A.V., Kondratjev M.S., Komarov V.M. On the nature of oligo (dA:dT)n tracks domination in the structure of eukaryotic genomes. Biofizika, 2016, vol. 6, pp. 1045-1058. (In Russ.)]
23. Mackewicz D. [et al.] Distribution of Recombination Hotspots in the Human Genome - A Comparison of Computer Simulations with Real Data. PLOS ONE, 2013, vol. 8, e65272.
24. Cooper D.N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet., 1988, vol. 78, pp. 151-155.
25. Sved J., Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc. Natl. Acad. Sci USA, 1990, vol. 87, pp. 4692-4696.
26. Fryxell K.J., Moon W.J. CpG mutation rates in the human genome are highly dependent on local GC content. Mol. Biol. Evol., 2005, vol. 22, pp. 650-658.