The living systems (complexity, homeostatic systems) are a special systems of the third type of complexity in natural science and for such systems it is impossible to determine the stationary state in form of dx/dt=0 (deterministic approach) or in the form of invariance of distribution function f(x) for samples acquired in a row of, the any component xi of all vectors of state x=x(t) =(x1,x2,…,xm)T in m‐dimensional phase space of states. At the same time the mixing property doesn’t met (no invariant measures), the autocorrelation functions A(t) don’t tend to zero if t→∞, Lyapunov’s constants can continuously change the sign. Such systems of the third type (complexity) do not meet the condition of Glansdorff – Prigogine’s theorem, i.e. P ‐ the rate of increase of entropy E (P=dE/dt) doesn’t minimized near the point of maximum entropy E (i.e., at point of thermodynamic equilibrium). It is proposed to use the concept of quasi‐attractors to describe the complexity.
living systems, autocorrelation, phase space, complexity.
Живые системы – системы третьего типа (СТТ) по W. Weaver (организованная сложность) [18] имеют особую динамику поведения их вектора состояния x=x(t)=(x1, x2, …,xm)T в m‐мерном фазовом пространстве состояний (ФПС). До настоящего времени многие пытались СТТ описывать терминами статистической функции распределения f(x) или в рамках теории детерминированного хаоса Лоренца – Арнольда.