Mathematical methods and models used in forecasting problems may relate to a wide variety of topics: from the regression analysis, time series analysis, formulation and evaluation of expert opinions, simulation, systems of simultaneous equations, discriminant analysis, logit and probit models, logical unit decision functions, variance or covariance analysis, rank correlation and contingency tables, etc. In the analysis of the phenomenon over a long timeperiod, for example, the incidence of long-term dynamics with a forecast of further development of the process, you should use the time series, which is influenced by the following factors: • Emerging trends of the series (the trend in cumulative long-term effects of many factors on the dynamics of the phenomenon under study - ascending or descending); • forming a series of cyclical fluctuations related to the seasonality of the disease; • random factors. In our study, we conducted a study to identify cyclical time series of long-term dynamics of morbidity of HFRS and autumn bank vole population. This study was performed using the autocorrelation coefficient. As a result of time-series studies of incidence of HFRS, indicators autumn bank vole population revealed no recurrence, and these figures are random variables, which is confirmed by three tests: nonrepeatability of time series, the assessment increase and decrease time-series analysis of the sum of squares. This shows that a number of indicators of the time series are random variables, contains a strong non-linear trend, to identify which need further analysis, for example by means of regression analysis.
natural focal infections, voles, HFRS, time series analysis, autocorrelation, incidence, number, autoregressive model correlograms.
1. Novokhatka A.D., Smol´yaninova O.L., Chestnova T.V. Vliyanie infitsirovannosti i chislennosti melkikh mlekopitayushchikh po landshaftno-geograficheskim zonam Tul´skoy oblasti na zabolevaemost´ leptospirozom serogruppy grippotifoza. Vestnik novykh meditsinskikh tekhnologiy. 2005. №1. S. 122–124.
2. Chestnova T.V., Smol´yaninova O.L., Logvinov S.I. K voprosu o vybore metoda matematicheskogo analiza s tsel´yu prognozirovaniya zabolevaemosti leptospirozom. Vestnik novykh meditsinskikh tekhnologiy. 2011. №4. S.18–21.
3. Chestnova T.V., Smol´yaninova O.L, Smol´yaninova V.A. K voprosu prognozirovaniya chislennosti iksodovykh kleshchey I. ricinus v prirodnykh biotopakh s pomoshch´yu iskusstvennykh neyronnykh setey. Vestnik novykh meditsinskikh tekhnologiy. 2012. №1. S. 231–232.
4. Evstegneeva V.A., Chestnova T.V., Smol´yaninova O.L. O neyrosetevom modelirovanii i prognozirovanii epizootiy tulyaremii na territorii Tul´skoy oblasti. Vestnik novykh meditsinskikh tekhnologiy. Elektronnoe izdanie. 2014. № 1. Publikatsiya 1-9. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/E2014-1/5022. (Data obrashcheniya: 1.12.2014). DOI:10.12737/7240
5. Evstegneeva V.A. K voprosu o matematicheskikh metodakh prognozirovaniya zabolevaemosti prirodno - ochagovymi infektsiyami. Vestnik novykh meditsinskikh tekhnologiy. Elektronnoe izdanie. 2014. № 1. Publikatsiya 1-10. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/E2014-1/5023. (Data obrashcheniya:1.12.2014). DOI: 10.12737/7241