MATHEMATICAL MODELS OF DYNAMIC SYSTEMS THAT INCLUDE LAYERED WATERED POROELASTIC FOUNDATIONS
Rubrics: MECHANICS
Abstract and keywords
Abstract (English):
New mathematical models including an oscillation generator and semi-bounded non-uniform in depth foundation possessing porosity, fluid saturation, and viscoelasticity, are considered. The foundation is represented by a poroelastic layer saturated with gas-liquid mixture, a heterogeneous layer with a viscoelastic coating, and a heterogeneous layer with a subsurface liquid sheet. The foundation of the pack of layers is hard. The opera-tion of the surface oscillator is represented as Fourier series, and the problem of steady-state oscillatory conditions is solved. Applying the Fourier integral transform to the equations that describe continuous media under satisfying boundary condi-tions allows the construction of integral formulas describing the stress-strain condition in the layer package. A numerical algorithm to study the dependence of the ground-wave prop-agation on the mechanical and geometrical characteristics of the problem is proposed. The models described are widely used in Geophysics, seismic exploration, construction, rail-way design, and new material designing.

Keywords:
heterogeneous layered medium, wave field, propaga-tion of vibrations, embedded liquid layer.
Text

Моделирование сложных технических динамических систем, содержащих сосредоточенные и непрерывно распределенные параметры, представляет научный интерес с точки зрения использования в геологии, сейсморазведке, строительстве, проектировании железнодорожных и автомагистралей. Применение таких моделей позволяет совершенствовать биотехнологии, конструировать новые материалы с заданными свойствами. Следует отметить, что требования к проектированию, эксплуатации сложных технических объектов и технологических процессов растут.В связи с этим возникает необходимость изучения новых математических моделей динамических про-цессов, описываемых системой обыкновенных дифференциальных уравнений, моделирующих воздействие генератора колебаний, и дифференциальных уравнений в частных производных, описывающих поведение полуограниченного основания. В качестве основания в настоящей работе рассматриваются случаи гетерогенного слоя (задача А), гетерогенного слоя с вязкоупругим покрытием (задача В), гетерогенного слоя с заглубленным жидким слоем (задача С).

References

1. Gorshkov, А.G., Starovoytov, E.I., Tarlakovskiy, D.V. Teoriya uprugosti i plastichnosti. [Theory of elasticity and plasticity.] Moscow: Fizmatlit, 2002, 440 p. (in Russian).

2. Bio, М.А. Mekhanika deformirovaniya i rasprostraneniya akusticheskikh voln v poristoy srede. [Mechanics of de-formation and propagation of acoustic waves in porous medium.] Mechanics. Periodic coll. of translations of foreign papers. 1963, vol. 6, no. 82, pp. 103–134 (in Russian).

3. Burridge, R., Keller, J.-B. Poroelasticity equations derived from microstructure. The Journal of the Acoustical So-ciety of America, 1981, vol. 70, no. 4, pp. 1140–1146.

4. Scalia, A., Sumbatian, M.A. Contact problem for porous elastic half-plane. Journal of elasticity, 2000, vol. 60, no. 32, pp. 91–102.

5. Suvorova, Т.V., Usoshina, E.A. Kolebaniya sostavnogo geterogennogo sloya. [Oscillation of composite heteroge-neous layer.] Ecological Bulletin of Research Centers of the Black Sea economic cooperation, 2010, no. 2, pp. 74–79 (in Rus-sian).

6. Kolesnikov, V.I., Suvorova, T.V. Modelirovanie dinamicheskogo povedeniya sistemy «verkhnee stroenie zheleznodorozhnogo puti — sloistaya gruntovaya sreda». [Simulation of dynamic behavior of the system “track structure - layered soil ground”.] Moscow: VINITI RAN, 2003, 232 p. (in Russian).

7. Sveshnikov, А.G., Tikhonov, A.N. Teoriya funktsiy kompleksnoy peremennoy. [Complex variable theory.] Mos-cow: Nauka, 2004, 336 p. (in Russian).

8. Chao-Lung Yeh, Lo Wei-Cheng, Jan Chyan-Deng. An assessment of characteristics of acoustic wave propagation and attenuation trough eleven different saturated soils. American Geophysical Union. Fall Meeting. 2006, no. 12, p. 31.

9. Sumbatyan, M.A., Scalia, A., Usoshina, H.A. Dynamic Contact Problem for a Heterogeneous Layer with a Liquid Sheet on a Non-Deformable Foundation. Physics and Mechanics of New Materials and Their Applications (PHENMA 2015): Abstracts & Schedule оf 15 International Conference. Southern Federal University. Azov, 2015. Available at: http://phenma 2015.math.sfedu.ru. pp. 239–240 (accessed: 16.07.16).

10. Hofmann, M., Most, T., Hofstetter, G. Parameter identification for partially saturated soil models. 2nd Interna-tional Conference on Computational Methods in Tunneling. Ruhr University Bochum. Bochum: Aedificatio Publishers, 2009, pp. 1–4.

Login or Create
* Forgot password?