An analysis of circuit design for a perspective propulsion system for short and medium range aircrafts has been carried out. It has been shown that use of traditional schemes engines working at aviation kerosene TC-1 will not allow match the ICAO ecological requirements for an aircraft of 2025-2035. Transition to hydrogen or liquefied natural gas allows match ICAO requirements for CO2 emissions. However it will lead to an essential transportation value addition (due to hydrogen and liquefied natural gas production and storage infrastructure). Application of the combined propulsion systems using both kerosene and cryogenic fuel will allow increase fuel efficiency and reduce CO2 emission by 16% for hydrogen and by 2.5–4.5% for methane. In such a case partial transition to hydrogen fuel will allow match ICAO requirements at the current freight charge.
aircraft engine, hybrid propulsion system, hydrogen, alternative fuel, ecological requirements.
1. Введение
В настоящее время в пассажирской и транспортной авиации основной силовой установкой является двухконтурный турбореактивный двигатель со смешением потоков наружного и внутреннего контуров или без смешения. По этому пути идут как российские (ПС-90А2, ПД-14) и китайские (WS-20) производители, так и различные международные консорциумы (CFM56, V2500, SaM146).
Однако для перспективных самолетов гражданской авиации к 2025–2035 гг. прогнозируемый Международной организацией гражданской авиации (ИКАО, ICAO — International Civil Aviation Organization) уровень целевых показателей предполагает снижение расхода топлива на 60–70%, уменьшение на 50% уровня эмиссии по СО2 и на 75–80% — по NOx, снижение уровня шума в 2 раза и т.д. [1].
Если для снижения уровня шума можно использовать подходы, предложенные в [2], то с эмиссией вредных выбросов сложнее. Известно, что для обеспечения выполнения требований Рамочной конвенции ООН об изменении климата [3] уменьшение удельного расхода топлива, а также уровня эмиссии СО2 на пассажиро-километр на 50% может быть достигнуто лишь при одновременном улучшении аэродинамических характеристик самолёта (вклад в долях~20 %), эффективности двигателя (~40 %) и совершенствовании системы управления воздушным движением (~10 %) [4].
1. Nyneshnie i budushchie tendentsii v oblasti aviatsionnogo shuma i emissii aviatsionnykh dvigateley. Rabochiy dokument A37-WP/26 [Present and Future Aircrat Noise and Emissions Trends. Working Paper A37-WP/26]. Monreal, IKAO, 2010. 9 p. (in Russian)
2. Arbekov, A., Dermer, P., Kunikeev, B. Povyshenie effektivnosti i snizhenie shuma gazoturbinnykh ustanovok [Increasing Effectiveness and Decreasing Noise of Gas Turbine Units]. Bezopasnost´ v tekhnosfere [Safety in Technosphere]. 2015, V. 4, I. 5, pp. 31–35. DOI: 10.12737/16961
3. The United Nations Framework Convention on Climate Change, UN FCCC/1992/84, GE.05-62220 (E) 200705. 25 p.
4. Ezrokhi Yu.A., Kalenskii S.M., Polev A.S., Drygin A.S. Predvaritel’noe issledovanie kharakteristik gibridnykh turboreaktivnykh dvukhkonturnykh dvigateley razlichnykh skhem dlya blizhne- i srednemagistral’nykh samoletov [Preliminary research of characteristics of various implementations of hybrid turbofan engines for short- and medium-haul aircrafts]. Nauka i obrazovanie MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU]. 2012, I. 3. Available at: http://technomag.bmstu.ru/doc/381537.html (accessed 15 September 2015). (in Russian)
5. Arkhipov D.V., Tumashev R.Z. Raschetnoe issledovanie vliyaniya tangentsial’nogo naklona i kosogo obtekaniya lopatok napravlyayushchego apparata na rabotu stupeni osevogo kompressora [Numerical Investigation of Influence of Tangent Pitch and Slanting Flow of Guide Vanes on the Axial Compressor Stage Parameters]. Nauka i obrazovanie MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU]. 2015, I. 11, pp. 178–192. DOI: 10.7463/1115.0825832 (in Russian)
6. Molyakov V.D., Kunikeev B.A. Osobennosti proektirovaniya effektivnykh turbin s uchetom vliyaniya radial’nogo zazora [Designing efficient turbines taking into account radial clearance]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2014, I. 9 (654), pp. 9–18. DOI: 10.18698/0536-1044-2014-9-9-18
7. Burtsev S.A., Kiselev N.A. Leont’ev A.I. Osobennosti issledovaniya teplogidravlicheskikh kharakteristik rel’efnykh poverkhnostey [Peculiarities of Studying Thermohydraulic Characteristics of Relief Surfaces]. Teplofizika vysokikh temperatur [High Temperature]. 2014, V. 52, I. 6, pp. 869–872. DOI: 10.1134/S0018151X14060054.
8. Aviatsiya i al’ternativnye vidy aviatsionnogo topliva. Rabochiy dokument A37-WP/23 [Aviation and Alternative Fuels. Working Paper A37-WP/23]. Monreal, IKAO, 2010. 5 p.
9. Yanovskii L.S., Raznoschikov V.V. Emissiya uglekislogo gaza silovymi ustanovkami transportnykh samoletov na al’ternativnykh toplivakh [Carbon dioxide emission by power units of transport aircrats on alternative fuels]. Zashchita okruzhayushchei sredy v netegazovom komplekse [Environmental protection in the oil and gas industry]. 2012, I. 4, pp. 32–37. (in Russian)
10. Ivanov V.L., Shegolev N.L., Skibin D.A. Povyshenie effektivnosti dvukhkonturnogo turboventilyatornogo dvigatelya vvedeniem promezhutochnogo okhlazhdeniya pri szhatii [Improving the efficiency of a bypass turbofan engine by intermediate cooling during compression]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2014, I. 11, pp. 75–83. DOI: 10.18698/0536-1044-2014-11-75-83
11. Ezrokhi Yu.A., Kalenskii S.M., Polev A.S., Drygin A.S., Ryabov P.A. Sravnitel’nyy analiz parametrov i kharakteristik razlichnykh skhem silovoy ustanovki s dopolnitel’nym vynosnym vintoventilyatorom [Comparative analysis of parameters and characteristics of diferent power plant schemes with an additional remote propfan]. Nauka i obrazovanie MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU]. 2012, I. 12, pp. 541–556. DOI: 10.7463/1212.0511469 (in Russian).
12. Burtsev S.A., Samoylov M.Yu, Simakov M.V. Analiz ekologicheskikh aspektov primeneniya perspektivnykh skhem silovykh ustanovok blizhne- i srednemagistral’nykh samoletov [Ecological Aspects of Implementing Prospective Propulsion Schemes of Short and Medium Haul Aircrafts]. Bezopasnost’ v tekhnosfere [Safety in Technosphere]. 2015, V. 4, I. 2, pp. 67-72. DOI: 10.12737/11335 (in Russian)
13. Nikolaikin N.I. Novye prioritety v sfere zashchity okruzhayushchey sredy ot vozdeystviya grazhdanskoy aviatsii dvigatelyami [New Priorities in the Environment Protection against Civil Aviation Inluence]. Bezopasnost’ v tekhnosfere [Safety in Technosphere]. 2013, V. 2, I. 5, pp. 25–30 (in Russian).
14. Chernova N.I., Kiseleva S.V., Popel’ O.S. Effektivnost’ proizvodstva biodizelya iz mikrovodorosley [Efficiency of the biodiesel production from microalgae]. Teploenergetika [Thermal Engineering]. 2014, I. 6, pp. 14–21. DOI: 10.1134/S0040363614060010
15. Senko O.V., Gladchenko M.A., Lyagin I.V., Nikolskaya A.B., Maslova O.V., Chernova N.I., Kiseleva S.V., Korobkova T.P., Efremenko E.N., Varfolomeyev S.D. Transformatsiya biomassy fototrofnykh mikroorganizmov v metan [Biomass transformation of phototrophic microorganisms to methane]. Mezhdunarodnyy nauchnyy zhurnal Al’ternativnaya energetika i ekologiya [International Scientific Journal for Alternative Energy and Ecology]. 2012, I. 3, pp. 89–94. (in Russian)
16. Gurov V. Unikal’nyy samolet Tu-155 s vodorodnym dvigatelem [The unique Tu-155 hydrogen-powered]. Dvigatel [Engine]. 2013, I. 5, pp. 4–6.
17. Galeev A.G. Obzor razrabotok po ispytaniyu raketnykh dvigateley i energeticheskikh ustanovok na vodorodnom toplive i problemam obespecheniya ikh bezopasnosti [Review of Development on Testing Rocket Engines and Power Plants on Hydrogen Fuel and the Problem of Ensuring Their Safety]. Mezhdunarodnyy nauchnyy zhurnal Al’ternativnaya energetika i ekologiya [International Scientific Journal for Alternative Energy and Ecology]. 2015, I. 12, pp. 16–27. DOI: 10.15518/isjaee.2015.12.002.
18. Le Duigou A., Miguet M., Amalric Y. French hydrogen markets in 2008 –Overview and future prospects. International Journal of Hydrogen Energy. 2011, V. 36, I. 15, pp. 8822–8830. doi:10.1016/j.ijhydene.2011.05.006.
19. Matskerle Yu. Sovremennyy ekonomichnyy avtomobil’ [Modern economical car]. Moscow, Mechanical Engineering Publ., 1987. 320 p.
20. Dunikov D., Borzenko V., Malyshenko S. Influence of impurities on hydrogen absorption in a metal hydride reactor. International Journal of Hydrogen Energy. 2012. V. 37. pp. 13843–13848. DOI: 10.1016/j.ijhydene.2012.04.078.
21. Burtsev S.A., Kochurov D.S., Schegolev N.L. Issledovanie vliyaniya sostava binarnykh smesey inertnykh gazov na ikh teplofizicheskie svoystva [Investigation of the helium proportion influence on the Prandtl number value of gas mixtures]. Nauka i obrazovanie MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU]. 2015, I. 5, pp. 314–329. DOI: 10.7463/0514.0710811. (in Russian)
22. Dunikov D.O., Borzenko V.I., Malyshenko S.P., Blinov D.V., Kazakov A.N. Perspektivnye tekhnologii ispol’zovaniya biovodoroda v energoustanovkakh na baze toplivnykh elementov (obzor) [Prospective Technologies for Using Biohydrogen in Power Installations on the Basis of Fuel Cells (a Review)]. Teploenergetika [Thermal Engineering]. 2013, V. 60, I. 3, pp. 202–211. DOI: 10.1134/S0040601512110043.
23. Abbas H.F., Wan Daud W.M.A. Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy. 2010. V. 35, I. 3, pp. 1160–1190. DOI: 10.1016/j.ijhydene.2009.11.036.
24. 潘相敏,林瑞,李昕等. 氢能与燃料电池的研发及商业化 进展[J]. 科技导报, 2011, 29(27): 第73-79页. (Pan X, Lin R, Li X, Ma J. Research Development and Commercialization Advances of Hydrogen Energy and Fuel Cell // Science & Technology Review. 2011. V. 29, Iss. 27, P. 73–79. (in Chinese))
25. 李建秋, 方川与徐梁飞, 燃料电池汽车研究现状及发展.汽 车安全与节能学报, 2014. 5(1): 第17–29页. (LI Jianqiu,FANG Chuan,XU Liangfei.Current status and trends of the research and development for fuel cell vehicles[J].J Automotive Safety and Energy, 2014, 5(1), pp. 17-29 (in Chinese))
26. Semenov V.L. Vozmozhnosti realizatsii infrastruktury zapravki, khraneniya i ispol’zovaniya vodoroda [Possibilities of Realization of an Infrastructure of Refueling, Storage and Hydrogen Use]. Nasosy. Turbiny. Sistemy [Pumps. Turbines. System]. 2012, I. 2, pp. 14–18.