MODELING Z-SHAPED DISTURBANCE ALONG THE PEDERSEN RAY OF OBLIQUE SOUNDING IONOGRAM USING ADAPTATION OF IRI TO EXPERIMENTAL DATA
Abstract and keywords
Abstract (English):
We present the results of numerical modeling of a traveling ionospheric disturbance that causes z-shaped bends at the Pedersen ray of oblique incidence ionograms. The results of trajectory synthesis of oblique incidence ionograms are given for the ionosphere, taking into account the traveling ionospheric disturbance. In the work, we use the International Reference Ionosphere, adapted to experimental data, and the Model of Ionosphere and Plasmasphere.

Keywords:
ionosphere, oblique sounding, ionogram, traveling ionospheric disturbances
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Исследованию ионосферных неоднородностей, в том числе перемещающихся ионосферных возмущений (ПИВ), посвящено большое количество работ [Maeda, Handa, 1980; Иванов и др., 1987; Бойтман, Калихман, 1989; Вугмейстер и др., 1993; Millward et al., 1993; Hocke, Schlegel, 1996; Афраймович и др., 2002; Ding et al., 2008]. Одновременно с суточными и сезонными вариациями параметров ионосферы (крупномасштабными неоднородностями) на высотах ионосферы всегда присутствуют движущиеся ионизированные структуры мелких и средних масштабов.

Несмотря на появление и развитие космических средств зондирования, благодаря которым появилась возможность получать полное электронное содержание [Афраймович, Перевалова, 2006], исследование ионосферы с помощью ионозондов с линейной частотной модуляцией сигнала является актуальным и иногда единственным способом получения информации о канале связи. Важно понимать факторы, которые могут приводить к искажениям дистанционно-частотных характеристик (ДЧХ) наклонного зондирования (НЗ) и к отклонениям от средних значений колебаний суточного хода максимальных наблюдаемых частот (МНЧ). Вариации МНЧ с периодами более одного часа на трассах НЗ могут объясняться крупномасштабными ПИВ, проходящими трассу зондирования на высотах F-области [Кутелев, Куркин, 2011]. Вариации МНЧ меньших периодов часто сопровождаются наличием на ДЧХ z-образных перегибов на односкачковой моде 1F2 [Вертоградов и др., 2008], которые двигаются с течением времени по верхнему лучу (Педерсена) из области более высоких в область более низких задержек (иногда повторяя такое прохождение несколько раз).

Целью работы было моделирование ПИВ, приводящего к z-образным перегибам на луче Педерсена на ДЧХ. Для моделирования среды распространения привлекались модели: International Reference Ionosphere (IRI) с коррекцией по реальным данным наблюдений и Глобальная модель ионосферы и плазмосферы (ГМИП), разработанная в ИСЗФ СО РАН.

References

1. Afraimovich E.L., Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli [GPS-Monitoring of the Earth’s Upper Atmosphere]. Irkutsk, 2006, 480 p. (In Russian).

2. Afraimovich E.L., Ashkaliev Ya.E., Aushev V.M. Beletsky A.B., Vodyannikov V.V., Leonovich L.A., Lesyuta O.S., Mikhalev A.V., Yakovets A.F. Simultaneous radio and optical observations of the mid-latitude atmospheric response to a major geomagnetic storm of 6–8 April 2000. J. Atmos. and Sol.-Terr. Phys. 2002, vol. 64, no. 18, pp. 1943–1955.

3. Afraimovich E.L., Voeykov S.V., Perevalova N.P. Traveling wave disturbance of total electron content ac-cording to worldwide GPS network (morphology and dynamics). Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2002, iss. 3, pp. 61–72. (In Russian).

4. Balaganskiy B.A., Sazhin V.I. Numerical modeling of HF radio wave characteristics in the ionosphere with third-dimensional inhomogeneous disturbances // Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy], 2003, vol. 43, no. 1, pp. 92–96. (In Russian).

5. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennye metody [Numerical Methods]. FML Publ., 2001. 630 p. (In Russian).

6. Boitman O.N., Kalikhman A.D. Analysis of traveling ionospheric disturbances structure with the help of ionograms. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Geomagnetism, Aeronomy and Solar Physics Research], Moscow, Nauka Publ., 1989, vol. 88, pp. 59–69. (In Russian).

7. Davies K. Ionospheric Radio Propagation. U.S. Department of Commerce, National Bureau of Standards, 1965. 470 p.

8. Ding F., Wan W., Liu L., Afraimovich E.L., Voeykov S.V., Perevalova N.P. Statistical study of large scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J. Geophys. Res. 2008, vol. 113, A00A01.

9. Drob D.P., Emmert J.T., Crowley G., Picone J.M., Shepherd G.G., Skinner W., Hays P., Niciejewski R.J., Larsen M., She C.Y., Meriwether J.W., Hernandez G., Jarvis M.J., Sipler D.P., Tepley C.A., O´Brien M.S., Bowman J.R., Wu Q., Murayama Y., Kawamura S., Reid I.M., Vincent R.A. An empirical model of the Earth´s horizontal wind fields: HWM07. J. Geophys. Res. 2008, vol. 113, A12304. DOI: 10.1029/2008 JA013668.

10. Emmert J.T., Drob D.P., Shepherd G.G., Hernandez G., Jarvis M.J., Meriwether J.W., Niciejewski R.J., Sipler D.P., Tepley C.A. DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. J. Geophys. Res. 2008, vol. 113, A11319. DOI: 10.1029/2008JA013541.

11. Golygin V.A., Mikhailov Ya.S., Sazhin V.I. Numerical modeling of oblique ionograms with propagation in ionospheric channels. Baikal’skaya mezhdunarodnaya molodezhnaya shkola po fundamentalnoi fizike: trudy [Proc. Baikal Young Scientists` International School on Fundamental Physics], Irkutsk, 2003, pp. 75–77. (In Russian).

12. Grozov V.P., Dumbrava Z.F., Kim A.G., Kotovich G.V., Mikhailov Ya.S., Oinats A.V. Traveling ionospheric disturbances from oblique ionograms and modeling of disturbance parameters. Rasprostranenie radiovoln: sbornik dokladov XXI Vserossiyskoi nauchnoi konferentsii [Radio Propagation: Proc. XXI Russian National Conf.], Yoshkar-Ola, 25–27 May 2005, vol. 1, pp. 177–181. (In Russian).

13. Hardy D.A., Gussenhoven M.S., Raistrick R., McNeil W.J. Statistical and functional representation of the pat-tern of auroral energy flux, number flux, and conductivity. J. Geophys. Res. 1987, vol. 92, pp. 12275–12294.

14. Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, vol. 14, pp. 917–940.

15. Ivanov V.P., Karvetskiy V.L., Koren`kova N.A. Seasonal-diurnal variations of middle scale traveling iono-spheric disturbances. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1987, vol. 27, no. 3, pp. 511–513. (In Rus-sian).

16. Ivanov V.A., Lyong V.L., Nasyrov A.M., Ryabova N.V. Modeling of ionograms for traveling ionospheric disturbances research and its connection with maximal observing frequencies. Georesursy [Georesources]. 2006, no. 2 (19), pp. 2–5. (In Russian).

17. Kim A.G., Grozov V.P., Kotovich G.V. Application of modified method of transferring curves for critical frequency calculation from Pedersen ray in path midpoint. Mezhdunarodnaya Baikal’skaya molodezhnaya shkola po fundamen-talnoi fizike: trudy [Proc. Baikal Young Scientists` International School on Fundamental Physics]. Irkutsk, 2004, pp. 82–85. (In Russian).

18. Kiyanovsky M.P. Computer calculations with the help of the modified method of transfer curves. Luchevoe priblizhenie i voprosy rasprostraneniya radiovoln [Geometric optics and radio propagation]. Moscow, Nauka Publ., 1971, pp. 287–298. (In Russian).

19. Kiyanovsky M.P., Sazhin V.I. On the analytical representation of ionospheric data in calculating decameter radio wave propagation. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Geomagnetism, Aeronomy and Solar Physics Re-search]. Moscow, Nauka Publ., 1980, iss. 51, pp. 41–48. (In Russian)

20. Konoplin V.N., Orlov A.I. Data approaching by local second-order splines. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Geomagnetism, Aeronomy and Solar Physics Research]. Moscow, Nauka Publ., 1981, iss. 57, pp. 101–104. (In Russian).

21. Kopka H., Möller H.G. Interpretation of anomalous oblique incidence sweep-frequency records using ray tracing. Radio Sci. 1968, vol. 3, no. 1, pp. 43–51.

22. Kotovich G.V., Mikhailov S.Ya. Adaptive Abilities of IRI model in predicting decametric radiopath character-istics. Geomagnetism and Aeronomy. 2003, vol. 43, no. 1, pp. 82–85.

23. Kotovich G.V., Kim A.G., Mikhailov S.Ya., Grozov V.P., Mikhailov Ya.S. Determining the foF2 critical fre-quency at the path midpoint from oblique sounding data based on the Smith method. Geomagnetism and Aeronomy. 2006, vol. 46, no. 4, pp. 517–521.

24. Kravtsov Yu.A., Orlov Yu.I. Geometricheskaya optika neodnorodnykh sred [Geometric optics for non-homogeneous media]. Moscow, Nauka Publ., 1980. 304 p. (In Russian).

25. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera [Ionosphere and Plasmasphere]. Moscow, Nauka Publ., 1984, 189 p. (In Russian).

26. Kutelev K.A., Kurkin V.I. Modeling impact of large-scale wavelike traveling ionospheric disturbances on oblique ionograms for Irkutsk–Norilsk and Irkutsk–Magadan paths. Rasprostranenie radiovoln: sbornik dokladov XXIII Vserossi-iskoi nauchnoi konferentsii [Radio Propagation: Proc. XXIII Russian National Conf.], Yoshkar-Ola, 23–26 May, 2011, vol. 1, pp. 235–238. (In Russian).

27. Maeda S., Handa S. Transmission of large-scale TIDs in the ionospheric F2-region. J. Atmos. Terr. Phys. 1980, vol. 42, no. 9/10, pp. 853–859.

28. Mikhailov Ya.S., Kurkin V.I. Research of parameters of traveling ionospheric disturbances. Mezhdunarodnaya Baikal’skaya molodezhnaya shkola po fundamentalnoi fizike: trudy [Proc. Baikal Young Scientists` International School on Funda-mental Physics]. Irkutsk, 2007, pp. 164–167. (In Russian).

29. Millward G.H., Moffett R.J., Quegan S., Fuller-Rowell T.J. Effects of an gravity wave on the midlatitude iono-spheric F layer. J. Geophys. Res. 1993, vol. 98, pp. 19173–19179.

30. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, no. A12, pp. 1468–1483.

31. Ponomarchuk S.N., Kotovich G.V., Romanova E.B., Tashchilin A.V. Forecast of short radio waves character-istics on the base of Global ionosphere and plasmasphere model. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2015, vol. 1, no. 3, pp. 49–54. (In Russian).

32. Richards P.G., Fennelly J.A., Torr D.G. EUVAC: solar EUV flux model for aeronomic calculations. J. Ge-ophys. Res. 1994, vol. 99, no. A5, pp. 8981–8992.

33. Rishbeth H., Garriott O.K. Introduction to Ionospheric Physics. New York, Academic Press, 1969. 334 p.

34. Sojka J.J., Rasmussen C.E., Schunk R.W. An interplanetary magnetic field dependent model of the ionospheric convection electric field. J. Geophys. Res. 1986, vol. 91, pp. 11281–11290.

35. Tashchilin A.V., Romanova E.B. UT-control effects in the latitudinal structure of the ion composition of the topside ionosphere. J. Atmos. and Terr. Phys. 1995, vol. 57, no. 12, pp. 1497–1502.

36. Tashchilin A.V., Romanova E.B. Numerical modeling the high-latitude ionosphere. Proc. COSPAR. Colloquia Series. 2002, vol. 14, pp. 315–325.

37. Tashchilin A.V., Romanova E.B. Numerical modeling of ionosphere scattering in dipole geomagnetic field with crossover drift. Matematicheskoe modelirovanie [Mathematical modeling]. 2013, vol. 25, no. 1, pp. 3–17. (In Russian).

38. Vertogradov G.G., Denisenko P.F., Vertogradova E.G., Uryadov V.P. The monitoring of medium-scale trav-elling ionospheric disturbances as the result of oblique chirp sounding of the ionosphere. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems]. 2008, vol. 13, no. 5, pp. 35–44. (In Russian).

39. Vugmeister B.O., Zakharov V.N., Kalikhman A.D., Radionov V.V. About dynamics of traveling ionospheric disturbances. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Geomagnetism, Aeronomy and Solar Physics Research]. Moscow, Nauka Publ., 1993, vol. 100, pp. 189–196. (In Russian).

Login or Create
* Forgot password?