PERIODIC VIBRATIONS OF NONGOMOGENEOUS STRING WITH CLAMPED AND FREE ENDS.
Abstract and keywords
Abstract (English):
We prove the existence and regularity of infinitely many time-periodic solutions of the quasili-near equation vibrations of nongomogeneous string for the case in which the left end of string is clamped and the right end is free. The nonlinear term has power-law growth.

Keywords:
wave equation, periodic solutions, Sturm-Lioville problem, critical points of the functional.
Text
Publication text (PDF): Read Download
References

1. Barby, V. Periodic solutions to nonlinear one dimensional wave equation with x - dependent coefficients/ V. Barby, N. H. Pavel // Trans. Amer. Math. Soc.-1997.-V. 349. - № 5.- P. 2035-2048.

2. Rabinowitz, P. Free vibration for a semilinear wave equation/ P. Rabinowitz//Comm. Pure Aple. Math.-1978.- V. 31.- № 1.- P. 31-68.

3. Bahri, A. Periodic solutions of a nonlinear wave equation/A. Bahri, H. Brezis// Proc. Roy. Soc. Edinburgh Sect. A. - 1980.- V. 85. – P. 3130-320.

4. Brezis, H. Forced vibration for a nonlinear wave equations/ H. Brezis, L. Nirenberg //Comm. Pure Aple. Math.-1978.- V. 31. - № 1.- P. 1-30.

5. Plotnikov, P. I. Existence of a denumerable set of periodic solutions for a task of forced vibration for poorly nonlinear wave equation / P. I. Plotnikov // Mathematical Proceedings.-1988. - Vol. 136(178).-No. 4(8). - pp. 546-560.

6. Feireisl, E. On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term/ E. Feireisl //Chechosl. Math. J.- 1988.-V. 38.- № 1.- P.- 78-87.

7. Rudakov, I.A. Nonlinear vibration of a string / I.A. Rudakov // Bulletin of MSU. Ser. 1, Math., Mech. – 1984. - No. 2. – pp. 9-13.

8. Rudakov, I. A. Periodic solutions of nonlinear wave equation with nonconstant coefficients / I. A. Rudakov // Mathematical notes.-2004. - Vol. 76. - Issue 3. - pp. 427-438.

9. Shuguan, J. Time periodic solutions to a nonlinear wave equation with - dependent coefficients/ J. Shu-guan//Calc. Var. -2008.-V. 32. – P. 137-153.

10. Rudakov, I.A. Periodic solutions of the quasilinear wave equation with variable coefficients / I.A. Rudakov // Mathematical Proceedings.-2007. - Vol. 198. - No. 4(8). - pp. 546-560.

11. Rudakov, I.A. Periodic solutions of the quasilinear wave equation with variable coefficients / I.A. Rudakov, A.P. Lukavy // Bulletin of Bryansk State Technical University. – 2014. – No. 3. – pp. 147-155.

12. Rudakov, I.A. On time-periodic solutions of a quasilinear wave equation/ I.A. Rudakov // Proceedings of MIAS.-2010. – Vol. 270. – pp. 226-232.

13. Trikomi, T. Differential equations / F.Trikomi. – M.: URSS, 2003.-351 p.

14. Feireisl, E. On the existence of periodic solutions of rectangle thin plate/ E. Feireisl //Chechosl. Math. J.- 1988.-V. 37.- № 1.- P.- 334-341.

15. Fadell, E.R. Borsuk-Ulam theorem for arbitrary actions and application/E.R. Fadell, S. Y. Husseini, P.H. Rabinowitz//Trans. Amer. Math. Soc.-1982.-V. 274.- № 1.- P.- 345-360.

Login or Create
* Forgot password?