Irkutsk, Irkutsk region, Russian Federation
Sterile preparations of membrane fractions were prepared by processing of live Francisella tularensis cells of different subspecies with 4.5M urea solution and differential centrifugation. For the first time, proteolytic activity was detected and studied by tests of radial enzyme diffusion and substrate polyacrylamide gel electrophoresis using gelatin as a substrate. Spectrum of gelatinases in the resulted preparation were detected. Quantitative inter-strain differences in the protease activities and their qualitative composition in membrane preparations of various virulent F.tularensis strains was analyzed. Avirulent F.tularensis 21/400 subsp. holarctica (I-214) strain demonstrated the greatest gelatinase activity in enzyme diffusion method and the lowest hydrolytic activity was seen in F.tularensis B-399 A-Cole subsp. tularensis (I-386) and F.tularensis Utah 112 subsp. novicida (I-384), other preparations showed intermediate activity. Enzyme electrophoresis in the protease spectra determined the presence of proteins with proteases activity 50–100kDa, and in the spectrum preparations of F. tularensis I-386 and I-384 were detected additional bands of proteases.
Francisella tularensis, subcellular fractions, outer membrane, enzyme, protease, proteolytic activity
1. .OlsufyevNG (1975). Taxonomy, microbiology and laboratory diagnosis of tularemia pathogen [Taksonomiya, mikrobiologiya i laboratornaya diagnostika vozbuditelya tulyaremii], 192
2. PavlovichNV, Shimanyuk NI, MishankinBN (1992). Neuraminidase activity of Francisella genus [Neyramin-idaznaya aktivnost’ predstaviteley roda Francisella]. Zhurnal mikrobiologii, (9-10), 8-10.
3. RodionovaIV (1970). Differentiation of Francisella tularensis geographical races based on the citrulline ureidase activity [Differentsiatsiya geograficheskikh ras Francisella tularensis na osnovanii aktivnosti tsitrulli-nureidazy]. Laboratornoe delo, (1), 42-43.
4. SheenkovNV, OpochinskiyEF, ValyshevAV etal.(2006). Persistence factors of Francisella tularensis[Faktory persistentsii Francisella tularensis]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, (1), 63-68.
5. ShimanyukNY, PavlovichNV, MishankinBN (1992). Superoxide dismutase activity in Francisella genus [Su-peroksiddismutaznaya aktivnost’ u predstaviteley roda Francisella]. Zhurnal mikrobiologii, epidemiologii i immu-nobiologii, (5-6), 7-9
6. BinaXR, WangC, MillerMA etal. (2006). The Bla2 β-lactamase from the live-vaccine strain of Francisella tularensis encodes a functional protein that is only active against penicillin-class β-lactam antibiotics. Arch. Micro-biol., 186(3), 219-228
7. ChandlerJC, SutherlandMD, HartonMR, MolinsCR, AndersonRV, HeaslipDG etal. (2015). Francisella tu-larensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J.Proteome Res, (14), 664-675
8. DreslerJ, KlimentovaJ, StulikJ (2014). Francisella tularensis membrane complexome by bluenative/SDS-PAGE. J. Proteomics, (75), 257-269.
9. FortierAH, GreenSJ, PolsinelliTR, JonesT, Craw-fordRM, LeibyDA, ElkinsKL, MeltzerMS, NacyCA (1994). Life and death of an intracellular pathogen: Francisella tu-larensis and the macrophage. Immunol. Ser., (60), 349-361.
10. HeussenC, DowdleEB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem., 102 (1), 196-202
11. HuntleyJF, ConleyPG, HagmanKE, NorgardMV (2007). Characterization of Francisella tularensis outer membrane proteins. J.Bacteriol., (189), 561-574
12. JanovskáS, PávkováI, HubálekM, LencoJ, MacelaA, StulíkJ (2007). Identification of immunore-active antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol. Lett., (108), 151-159.
13. LaemmliUK, FavreM (1973). Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol., 80 (4), 575-599
14. Mohapatra NP, ShilpaS, Rajaram MVS, Dang MC, Reilly TJ, El Benna J, Schlesinger LS, Gunn JS (2010). Francisella acid phosphatases inactivate NADPH oxidase complex components in human phagocytes by dephos-phorylation. J. Immun., 184 (9), 5141-5150.
15. NelsonDC, GarbeJ, CollinM (2011). Cysteine proteinase SpeB from Streptococcus pyogenes – a potent modifier of immunologically important host and bacterial proteins. Biochem., 392 (12), 1077-1088
16. OystonPCF (2008). Francisella tularensis: un-ravelling the secrets of an intracellular pathogen. J. Med. Microbiol., 57 (8), 921-930.
17. PotempaJ, PikeR (2009). Corruption of innate im-munity by bacterial proteases. J. Innate Immun., 1 (2), 70-87