The study objective is to develop a method for calculating the plain journal bearing with an adapted profile of the bearing surface operating on the micropolar lubrication. Furthermore, it is assumed that the micropolar fluid viscosity characteristics are temperature dependent. Partial filling of the front gap with lubricant (i.e. availability of a free surface) is considered. Except regular dimensionless parameters of Newtonian fluid theory, other options for micropolar liquid are introduced, namely the interaction of N and N1 parameters characterizing the dependence on the size of the grease molecules. The numerical analysis shows that with the heat parameter (К) increment, the carrying capacity of the bearing de-creases. With the increment of the parameters and charac-terizing the adapted profile of the bearing surface, the bearing capacity increases. At the parameter point of =0.5, maximum load capacity is achieved. At the bearing capacity value tends to the corresponding value for the case of Newtonian lubricant
radial bearing, load capacity, micropolar lubricant, temperature dependent viscous characteristics, adapted profile.
Как известно, в настоящее время в качестве модели гидродинамической смазки подшипников скольжения широко используется микрополярный жидкий смазочный материал. Поэтому разработка методов расчета подшипников скольжения, работающих на микрополярном жидком смазочном материале, требует учета зависимости вязкости не только от давления, а также зависимость вязкостных характеристик от температуры. Значимый недостаток существующих методов расчета подшипников скольжения, работающих на микрополярном жидком смазочном материале, состоит в том, что в большинстве случаев или вовсе не учитывается зависимость вязкости от давления и температуры [1–7], или учитывается эта зависимость только от давления [8–11].
1. Mukutadze, М.А. Matematicheskaya model´ szhimaemoy mikropolyarnoy gidrodinamicheskoy smazki radial´nogo podshipnika s adaptirovannym profilem ego opornoy poverkhnosti. [Mathematical model of compressible micropolar hydrodynamic lubrication for radial bearing with adapted profile of its surface.] Vestnik of DSTU, 2011, vol. 11, no. 8 (59), pp. 1400–1404 (in Russian).
2. Akhverdiev, K.S., et al. Matematicheskaya model´ gidrodinamicheskoy smazki radial´nogo podshipnika, rabotay-ushchego v nestatsionarnom rezhime na mikropolyarnoy smazke. [Mathematical model of hydrodynamic lubrication for radial bearing operating in an unsteady mode on micropolar lubrication.] Vestnik RGUPS, 2008, no. 1 (29), pp. 147–151 (in Russian).
3. Akhverdiev, K.S., et al. Gidrodinamicheskiy raschet radial´nogo podshipnika, rabotayushchego v nestatsionarnom rezhime na vyazkoplastichnoy smazke, obladayushchey mikropolyarnymi svoystvami. [The hydrodynamic calculation of radial bearing operating in nonstationary conditions with viscous-plastic lubricant having micropolar properties.] Vestnik RGUPS, 2008, no. 4 (32), pp. 131–138 (in Russian).
4. Akhverdiev, K.S., et al. Analiticheskiy metod prognozirovaniya znacheniy kriteriev mikropolyarnoy smazki, o-bespechivayushchikh ustoychivyy rezhim raboty radial´nogo podshipnika skol´zheniya. [Analytical method for prognosis of values of micropolar lubrication criteria providing stable operation of radial sliding bearing.] Friction and Wear, 2008, vol. 29, no. 2, pp. 184–191 (in Russian).
5. Akhverdiev, K.S., et al. Matematicheskaya model´ mikropolyarnoy smazki podshipnikov skol´zheniya s podatlivoy opornoy poverkhnost´yu. [Mathematical model of micropolar greasing of bearings of sliding with a pliable basic surface.] Friction & Lubrication in Machines and Mechanisms, 2012, no. 6, pp. 22–25 (in Russian).
6. Vovk, А.Y., Mukutadze, М.А., Savenkova, M.A. Matematicheskaya model´ prognozirovaniya znacheniy bez-razmernykh kriteriev mikropolyarnoy smazki, obespechivayushchikh ratsional´nyy rezhim raboty radial´nogo podshipnika skol´zheniya. [Mathematical model for predicting values of dimensionless criteria of micropolar lubrication ensuring rational operation of the radial plain bearing.] Vestnik RGUPS, 2007, no. 1 (25), pp. 5–8 (in Russian).
7. Akhverdiev, K.S., et al. Raschetnaya model´ radial´nogo podshipnika skol´zheniya s povyshennoy nesushchey spo-sobnost´yu, rabotayushchego na mikropolyarnoy smazke s uchetom ee vyazkostnykh kharakteristik ot davleniya. [Сomputational model of the radial plain bearing with high load carrying capacity operating at micropolar grease with account of its viscous characteristics from pressure.] Engineering Journal of Don, 2013, no. 4. Available at: http://ivdon.ru/magazine/archive/n4y2013/2200 (accessed: 20.11.14) (in Russian).
8. Akhverdiev, K.S., et al. Raschetnaya model´ upornogo podshipnika skol´zheniya s povyshennoy nesushchey spo-sobnost´yu, rabotayushchego na nen´yutonovskikh smazochnykh materialakh s adaptirovannoy opornoy poverkhnost´yu. [Computational model of thrust sliding bearing with high load-bearing capacity operating on non-Newtonian lubricants with adapted supporting surface.] Engineering Journal of Don, 2013, no. 4. Available at: http://ivdon.ru/magazine/archive/n4y2013/2201 (accessed: 20.11.14) (in Russian).
9. Akhverdiev, K.S., Mukutadze, M.A., Erkenov, A.C. Razrabotka raschetnykh modeley podshipnikov skol´zheniya na osnove usovershenstvovaniya uprugodinamicheskoy teorii smazki. [Development of computational models of plain bear-ings on the basis of improving elastic dynamical theory of lubrication.] Rostov-on-Don: RSTU Press, 2012, 371 p. (in Rus-sian).
10. Mukutadze, M.A. Razrabotka sistemy raschetnykh modeley podshipnikov skol´zheniya na osnove razvitiya gidrodinamicheskoy i reodinamicheskoy teorii smazki: dis. … d-ra tekhn. nauk. [Development of calculation models system of sliding bearings on the basis of the hydrodynamic lubrication theory and rheodynamic theory of lubrication: Dr.Sci. (Engs.) diss.] Rostov-on-Don: RSTU, 2015, 476 p. (in Russian).
11. Lagunova, Е.О.,Cherkasova, T.S., Mukutadze, M.A. Raschetnaya model´ s uchetom zavisimosti vyazkosti ot davleniya radial´nogo podshipnika, obladayushchego povyshennoy nesushchey sposobnost´yu. [Computational model with account of dependence of viscosity on the radial bearing pressure which has higher load-bearing capacity.] Tr. Mezhdunar. nauch.-prakt. konf. «Transport-2014». Ch. III. Tekhnicheskie i estestvennye nauki. [Proc. Int. Sci.-Pract. Conf. “Transport-2014”. Part III. Engineering and Science] St. Petersburg, 2014, pp. 218–220 (in Russian).