SURFACE SIMULATION ALGORITHM STREAMLINING BY THE BROWNIAN MOTION METHOD ON THE CRITERION OF ITERATIONS NUMBER MINIMIZING
Abstract and keywords
Abstract (English):
The paper has been devoted to construction of geometric model for real surface’s compartment at micro- and nanoscales with known fractal dimension. Receiving data on the real surface’s fractal dimension has been considered in [8; 9; 11; 13; 20]. Fractal dimension as a relief development measure has been accepted for the necessary and sufficient condition of the model construction. As is known, for a flying vehicle’s appearance the comprehensive characteristics research is performed with ground work in aerodynamic tubes, and numerical simulation. Similarly, a fragment of product’s heat protection is tested in high-enthalpy facilities for research of physico-chemical processes in the boundary layer, as well as for confirmation of calculations of interactions between rarefied gas’s particles and the surface. In this work has been performed the analysis of geometrical interpretations of algorithms for the fractal surfaces formation based on the Brownian motion method, proposed to use in calculations by Monte Carlo and Navier-Stokes methods. A point choice leading to construction of secant or tangent planes to space forms has been assigned as an element of randomness per iteration. All proposed algorithms lead to construction of surfaces with fractal dimension D ≈ 2.5, but by different iterations number. A tendency to reduce the iterations number required to achieve a specific fractal dimension by increasing the capacity of many lines for plane compartment digitalization has been revealed. The best result has been obtained by construction of projections for section of surface called a torus knot [19, 22]. Visualization was carried out in ASCON Kompas 3Dv.14 program on algorithms results in MathCAD environment.

Keywords:
fractal, fragment of thermal protection, Brownian motion method, fractal surface model.
Text

Введение


При проектировании летательного аппарата (ЛА), движущегося со сверхзвуковой или гиперзвуковой скоростью, перед конструкторами стоит сложная задача нахождения баланса между аэродинамическими характеристиками и тепловыми нагрузками. С геометрической точки зрения в первом случае задача сводится к оптимизации внешнего облика ЛА, максимально удовлетворяющего требуемым тактико-техническим характеристикам.

References

1. Abramov A.A. Sil'noe isparenie gaza s dvumernoj periodicheskoj poverhnosti [Strong gase vaporation from the twodimensional periodic surface]. Mekhanika zhidkosti i gaza [Fluid mechanics]. Academy of Sciences USSR Izvestiya Publ., 1985, i. 2, pp. 132–139. (in Russian)

2. Aksenova O.A. Fraktal'noe modelirovanie sherohovatoj poverhnosti pri aehrodinamicheskom raschete v razrezhennom gaze [Rough surfaces fractal modeling in the aerodynamic calculation in a rarefied gas]. Aehrodinamika [Aerodynamics]. St. Petersburg, St. Petersburg University Publ., 2000. pp. 120–129. (in Russian).

3. Bespalova N.V. Matematicheskie modeli v skaniruyushchej mikroskopii blizhnego polya i ih realizaciya v vide kompleksa programm. Kand. Diss. [Mathematical model in the scanning near-field microscopy and their implementation in complex programs form. Cand. Diss.]. Saratov, 2010. 111 p. (in Russian).

4. Brylkin Yu.V. Zavisimost' fraktal'noj razmernosti ot masshtaba s"yomki na primere stali 30HGSA [The fractal dimension dependence on the steel 30HGSA shooting scale example]. Nauchnye trudy “Sbornik nauchnyh statej aspirantov i doktorantov Moskovskogo gosudarstvennogo universiteta lesa” [Proc. of the MSFU “Scientific articles collection of the Moscow state forest University graduate and doctoral students”]. Moscow, MSFU Publ., 2014, i. 374, pp. 18–22. (in Russian)

5. Brylkin Yu.V. Issledovanie fraktal'noj struktury nitrida titana, nanesyonnogo na podlozhku iz nerzhaveyushchej stali [Fractal structure of titanium nitride deposited on stainless steel substrate]. Mezhvuz. sb. nauch. tr. Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Interuniversity collection of nauchnyh works. Physicochemical aspects of the study of clusters, nanostructures and nanomaterials]. Tver', Tver. gos. un-t. Publ., 2014, i. 6, pp. 59–65. (in Russian)

6. Brylkin Yu.V. Sravnitel'nyj analiz poverhnostej pokrytij iz nitrida titana, poluchennyh putyom magnetronnogo raspyleniya i plazmohimicheskim sposobom [A comparative analysis of the surface of titanium nitride coatings obtained by magnetron sputtering and plasma-chemical method]. Kosmonavtika i raketostroenie [Cosmonautics and rocket engineering]. Korolyov, TSNIImash Publ., 2015, no. 4, pp. 99–104. (in Russian)

7. Brylkin Yu.V. Fraktal'nyj podhod k opisaniyu poverhnostej metallov i splavov [Fractal approach to surfaces of metals and alloys description]. Nauchnye trudy “Sbornik nauchnyh statej aspirantov i doktorantov Moskovskogo gosudarstvennogo universiteta lesa” [Proc. of the MSFU “Scientific articles collection of the Moscow state forest University graduate and doctoral students”]. Moscow, MSFU Publ., 2013, i. 364, pp. 5–10. (in Russian)

8. Brylkin Yu. V., Vlasov V.I., Zalogin G.N., Kusov A.L., Rudin N.F. Ehksperimental'nye issledovaniya vliyaniya struktury poverhnosti materialov na ih kataliticheskuyu aktivnost' [Experimental investigation of the materials surface structure influence on their catalytic activity]. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physico-chemical kinetics in gas dynamics]. 2015, v. 16, i. 3. Available at: http://chemphys. edu.ru/issues/2015-16-3/articles/600 (in Russian)

9. Brylkin Yu.V., Kusov A.L. Vliyanie morfologii poverhnosti na fizicheskie svojstva materialov [The influence of surface morphology on the physical properties of materials]. Tezisy 58 nauchnoj konferencii MFTI [Abstracts of the 58th scientific conference of MIPT]. Moscow, Dolgoprudny, Zhukovsky, MIPT Publ., 2015. Available at: http://conf58.mipt.ru/ static/reports_pdf/651.pdf (In Russian)

10. Brylkin YU.V., Kusov A.L. Issledovanie zavisimosti fizicheskih svojstv poverhnosti ot fraktal'noj razmernosti [Research of the dependence of surface physical properties from the fractal dimension]. Mezhvuz. sb. nauch. tr. Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Interuniversity collection of nauchnyh works. Physico- chemical aspects of the study of clusters, nanostructures and nanomaterials]. Tver', Tver. gos. un-t. Publ., 2015, i. 7, pp. 142–149. (in Russian)

11. Brylkin YU.V., Kusov A.L. Issledovanie mikro- i nanostruktury poverhnosti mednogo splava s ispol'zovaniem teorii fraktalov [Analysis of microand nanostructure of copper alloy surface by using the fractal theory]. Kosmonavtika i raketostroenie [Cosmonautics and rocket engineering]. Korolyov, TSNIImash Publ., 2016, i. 5(90), pp. 89–95. (in Russian)

12. Brylkin Yu.V., Kusov A.L. Modelirovanie struktury rel'efa real'nyh poverhnostej na osnove fraktalov v aehrodinamike razrezhennyh gazov [Modeling of the real relief surfaces structure, based on fractals in the aerodynamics of rarefied gases]. Kosmonavtika i raketostroenie [Cosmonautics and rocket engineering]. Korolyov, TSNIImash Publ., 2014, i. 3, pp. 22–28. (in Russian)

13. Brylkin Y.V., Kusov A.L. Sootnoshenie fraktal'noj razmernosti i razlichnoj sherohovatosti dlya obrazcov medi [Relation between fractal dimension and surface roughness for the copper samples]. Mezhvuz. sb. nauch. tr. Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Interuniversity collection of nauchnyh works. Physicochemical aspects of the study of clusters, nanostructures and nanomaterials]. Tver', Tver. gos. un-t. Publ., 2013, i. 5, pp. 33–38. (in Russian)

14. Brylkin Yu.V., Kusov A.L. Fraktal'naya ocenka nanostruktur poverhnostej osnovnyh konstrukcionnyh materialov [Basic structural materials surfaces nanostructures fractal estimation]. Vserossijskij zhurnal nauchnyh publikacij [Russian journal of scientific publications]. Moscow, 2013, i. 4(19), pp. 21–22. Available at: http://cyberleninka.ru/article/n/ fraktalnaya-otsenka-nanostruktur-poverhnostey-osnovnyhkonstruktsionnyh- materialov (in Russian)

15. Brylkin YU.V., Kusov A.L., Florov A.V. Testirovanie algoritma modelirovaniya rel'efa sherohovatoj poverhnosti na osnove teorii fraktalov [Testing algorithm for terrain modelling rough surfaces based on the theory of fractals]. Izvestiya Kabardino- Balkarskogo gosudarstvennogo universiteta [Izvestiya]. Nalchik, Kabardino-Balkarian gos. un-t. Publ., 2014, v. 4, i. 5, pp. 86–89. (in Russian).

16. Gerasimova O.E., Borisov S.F., Procenko S.P. Modelirovanie sherohovatoj poverhnosti [Modeling rough surfaces]. Matematicheskoe modelirovanie [Mathematical modeling]. 2004, v. 16, i. 6, pp. 40–43. (in Russian)

17. State Standard 2789-73. Surface roughness. Parameters and characteristics. Moscow, Standartinform Publ., 2006. 7 p. (in Russian)

18. Zhiharev L.A. Obobshchenie na tryohmernoe prostranstvo fraktalov Pifagora i Koha. Chast' 1 [A generalization to three-dimensional space of fractal Pythagoras and Koch. Part 1]. Geometriya i grafika [Geometry and Graphics]. 2015, v. 3, i. 3, pp. 24–37. DOI: 10.12737/14417. (in Russian).

19. Ivanov G.S. Konstruktivnyj sposob issledovaniya cvojstv parametricheski zadannyh krivyh [Constructive method of studying the properties of parametrically defined curves].Geometriya i grafika [Geometry and Graphics]. 2014, v. 2, i. 3, pp. 3–6. DOI: 10.12737/6518. (in Russian).

20. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverhnosti [Fractal Geometric Model of Microsurface]. Geometriya i grafika [Geometry and Graphics]. 2016, v. 4, i. 1, pp. 4–11. DOI: 10.12737/18053. (in Russian).

21. CrowellR., FoxR. Introduction to knot theory. Springer- Verlag, 1963. 189 p. (Russ. Ed.: CrowellR., FoxR. Vvedenie v teoriyu uzlov. Moscow, Mir Publ., 1967. 348 p.) (in Russian).

22. Makashina E.V. Geometricheskoe modelirovanie vremennyh ryadov v mnogomernom prostranstve [Geometrical modeling of temporal series in multidimensional space]. Geometriya i grafika [Geometry and Graphics]. 2013, v. 1, i. 1, pp. 20–21. DOI: 10.12737/464. (in Russian).

23. Mandelbrot B.B. Fraktal'naya geometriya prirody [The Fractal Geometry of Nature]. New York. W. H. Freeman and Company, 1982. 470 p. Moscow, Izhevsk, Izhevskij institut komp'yuternyh issledovanij Publ., NIC «Regulyarnaya i haoticheskaya dinamika» Publ., 2010. 656 p. (in Russian).

24. Mandelbrot B.B. Fractales, hasard et finance. Paris: Flammarion, 1997. 246p. (Russ. Ed.: Mandelbrot B. Fraktaly, sluchay i finansy. Moscow, Izhevsk, NIC «Regulyarnaya i haoticheskaya dinamika» Publ., 2004. 256 p.) (in Russian).

25. Milnor J. Singular points of complex hypersurfaces. Princeton, N.J.: Princeton University Press, 1968, 122 p. (Russ. Ed.: Milnor Dzh. Osobye tochki kompleksnyh giperpoverhnostej. Moscow, Mir Publ., 1971. 129 p.) (in Russian).

26. Rachkovskaya G. Geometricheskoe modelirovanie i grafika kinematicheskih linejchatyh poverhnostej na osnove triady kontaktiruyushchih aksoidov [Geometrical modeling and graphics of kinematical ruled surfaces based on triad of contacting axoids]. Geometriya i grafika [Geometry and Graphics]. 2016, v. 4, i. 3, pp. 46–52. DOI: 10.12737/21533. (in Russian).

27. Tabenkin A.N., Tarasov S.B., Stepanov S.N. Sherohovatost', volnistost', profil'. Mezhdunarodnyj opyt [Roughness, waviness, profile. International experience]. Saint Petersburg, Polytechnic Institute Publ., 2007. 136 p. (in Russian).

28. Umbetov N.S. Konstruirovanie ehkvipotencial'noj poverhnosti [Equipotential surface construction]. Geometriya i grafika [Geometry and Graphics]. 2013, v. 1, i. 1, pp. 11–14. DOI: 10.12737/461. (in Russian).

29. Feder E. Fractals. New York. Plenum Press. 283 p. (Russ ed.: Feder E. Fraktaly. Moscow, URSS: Lenand Publ., 2014. 256 p.). (in Russian).

30. Shishkin E.I. Modelirovanie i analiz prostranstvennyh i vremennyh fraktal'nyh ob"ektov [Modeling and analysis of spatial and temporal fractal objects]. Ekaterinburg, Ural. gos. un-t Publ., 2004. 88 p. (in Russian).

31. De Carpentier, Giliam J.P. Interactively synthesizing and editing virtual outdoor terrain. MA thesis. Delft University of Technology. 2007. URL: http://www.decarpentier. nl/downloads/InteractivelySynthesizingAndEditingVirtualOutDoorTerrain_ report.pdf/

32. Nikuradse I. Stromungsgesetze in rauhen Rohren // Forschungs- Heft (Forschungs auf dem Gebiete des Ingenieur- Wesens). 1933. Vol. 361. Pp. 1–22.

33. Golks F., Krug K., Gründer Y., Zegenhagen J., Stettner J., Magnussen O.M. High-speed in situ surface X-ray diffraction studies of the electrochemical dissolution of Au // Journal of the American Chemical Society. 2011. No. 133 (11). Pp. 3772–3775. DOI: 10.1021/ja1115748.

Login or Create
* Forgot password?