Moskva, Moscow, Russian Federation
Russian Federation
This work is devoted to development of domestic technology for ion exchange resins treatment (conditioning) in the nuclear industry. In the work has been carried out the analysis of a number of domestic technologies applied to treatment of liquid radioactive waste for the purpose of their knots use for developed technological chain’s cost reduction. The analysis of perspective foreign technologies which are already used for ion exchange resins conditioning has been carried out as well. According to analysis report has been proposed the domestic technology for ion exchange resins conditioning with application of polymeric binding. The resulting experimental conditioned matrix obtained with this technology meets the modern requirements imposed to the final product of treatment, is convenient during the transporting and storage, at the same time it is close to foreign samples on key parameters.
solid radioactive waste (SRW), liquid radioactive waste (LRW), ion-exchange resins, radioactive waste treatment, polymerization
1. Введение в проблему
В настоящее время в мире функционируют 438 ядерных энергетических реакторов. По сведениям МАГАТЭ [1], идет строительство еще 70 энергоблоков.
1. Ezhegodnyy doklad MAGATE za 2014 god [IAEA Annual Report for 2014]. Available at: http://www.iaea.org/sites/default/files/gc59–7_rus.pdf (accessed 11 April 2016). (in Russian).
2. Pravitel’stvo Rossiyskoy Federatsii. Postanovlenie ot 23 oktyabrya 1995 goda N1030. «O federal’noy tselevoy programme «Obrashchenie s radioaktivnymi otkhodami i otrabotavshimi yadernymi materialami, ikh utilizatsiya i zakhoronenie na 1996–2005 gody» [The Government of the Russian Federation. Decree of October 23, 1995 N1030. “On the federal target program” Management of radioactive waste and spent nuclear materials, their utilization and burial for 1996–2005”]. Available at: http://www.gosthelp.ru (accessed 11 April 2016). (in Russian).
3. Federal’naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru. NP‑002–15 Pravila bezopasnosti pri obrashchenii s radioaktivnymi otkhodami atomnykh stantsiy [Federal Service for Environmental, Technological and Nuclear Supervision. NP‑002–15 Safety rules for handling radioactive waste from nuclear power plants]. Available at: http://www.seogan.ru (accessed 05 April 2016). (in Russian).
4. Frolova G. S. Otrabotannye ionoobmennye smoly i analiz vozmozhnykh otechestvennykh tekhnologiy dlya ikh pererabotki [Spent ion exchange resins and analysis of possible domestic technologies for their processing]. Molodezhnyy nauchno-tekhnicheskiy vestnik [Youth scientific and technical bulletin]. MGTU im. N. E. Baumana Publ. 2015. Available at: http://sntbul.ru/doc771124 (accessed 08 June 2016). (in Russian).
5. Bezopasnost’ yadernykh tekhnologiy i okruzhayushchey sredy [Safety of nuclear technologies and the environment]. 2011, I. 2. Available at: http://www.atomic-energy.ru/ store/26448 (accessed 06 July 2016). (in Russian).
6. Jianlong Wang, Zhong Wan. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy 78. 2015. 47–55
7. Federal’naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru. NP‑019–15 Sbor, pererabotka, khranenie i konditsionirovanie zhidkikh radioaktivnykh otkhodov. Trebovaniya bezopasnosti [Federal Service for Environmental, Technological and Nuclear Supervision. NP‑019–15 Collection, processing, storage and conditioning of liquid radioactive waste. Safety requirements]. Available at: http://www.seogan.ru (accessed 04 July 2016). (in Russian).