FIVE-DIMENSIONAL TWO-OKTANTAL EPURE NOMOGRAM
Abstract and keywords
Abstract (English):
Multidimensional experimental tasks with interdependent physical quantities can't be characterized by use of flat two-dimensional plots. Nomograms of new type solve such tasks. In this paper have been presented the nomograms with systematized both axes and planes. At construction of such models it is required a clear separation of all parametrial variable on arguing and functional ones. Nearby axes of interdependent parameters should lie alongside. Each axonometric cell should have a resultant indicator in the form of full size’s geometrical image. For the optimum choice of graphic execution on tabular data with four or five parameters, in the present paper is offered a method of its realization by means of two-oktantal nomogram. Justifications for this method have been presented in the paper. The method itself is based on descriptive geometry’s opportunities expansion at the solution of technical tasks by means of multidimensional geometry. The main lever for the task implementation is, certainly, communication lines. Formerly known from descriptive geometry such concepts as plane of reference, horizontally projecting surface, on the one hand, and pointed measurement of all experimental parameters on the other hand, provides to the nomogram possibility of its understanding for genesis in physical processes. Based on similarity of adjacent oktantal cells having the general axis are plotting two oktantal axonometric nomograms, creating interdependence between parameters by means of communication lines. This method opens a possibility for understanding of physical processes transformation. In this paper have been presented two graphic models of two oktantal nomograms competing for the right to be used by force of theirs optimal advantages. Absolute values of parameters are the real ones, taken from papers in "News of Higher Educational Institutions. North Caucasus Region" journal. Technical Sciences. No. 3, pp. 77–83, and No. 2, pp. 112–119. 2016.

Keywords:
descriptive geometry, multicomponent systems, spatial nomography, functional and arguing axes, communication lines, experiment’s physical component, working horizontal plane, arguing frontal plane, arguing profile plane, similarity theorem, axonometric projections, oktantal nomograms, two-oktantal nomogram, axes of coordinates.
Text

Разнообразие построения номограмм актуально во всех отраслях хозяйственной деятельности. Само название номография было предложено в 1884 г. французским инженером Оканем [24, с. 3].

References

1. Adler Yu.R. Planirovanie eksperimenta pri poiske optimal'nykh usloviy [Planning an experiment in the search for optimal conditions]. Moscow, Mashinostroenie Publ., 1976. 279 p. (in Russian).

2. Batuner L.M. Matematicheskie metody v khimicheskoy tekhnike [Mathematical methods in chemical engineering]. Khimiya [Chemistry]. Moscow, 1968. 823 p. (in Russian).

3. Branovitskaya S.V. Vychislitel'naya matematika v khimii i khimicheskoy tekhnologii [Computational Mathematics in Chemistry and Chemical Technology]. Moscow, Vysshaya shkola Publ., 1986. 216 p. (in Russian).

4. Bubennikov A.V., Gromov M.Ya. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, Vysshaya shkola Publ., 1973. 823 p. (in Russian).

5. Vyshnepol'skiy V.I. Tseli i metody obucheniya graficheskim distsiplinam [Goals and methods of teaching graphic disciplines]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 2, pp. 8 — 9.

6. Glagolev N. A. Kurs nomografii [Course of nomographs]. Moscow, 1961. 368 p. (in Russian).

7. Gordon V.O., Sementsov-Ogievskiy M.A. Kurs nachertat6el'noy geometrii [The course of grained geometry]. Moscow, 1988, 2002. 272 p. (in Russian).

8. Sal'kov N.A., Nachertatel'naya geometriya — baza dlya geometrii analiticheskoy [Descriptive Geometry — Base for Analytical Geometry]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 1, pp. 44–54. DOI: 10.12737/18057. (in Russian).

9. Sal'kov N.A., Nachertatel'naya geometriya — baza dlya komp'yuternoy grafiki [Descriptive geometry — base for computer graphics]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 37–47. DOI; 10.12737/19832. (in Russian).

10. Sal'kov N.A., Nachertatel'naya geometriya — teoriya izobrazheniy [Descriptive Geometry — Image Theory]. Moscow, INFRA-M Publ., 2013. 174 p. (in Russian).

11. Sal'kov N.A. Parametricheskaya geometriya v geometricheskom modelirovanii [Parametric geometry in geometric modeling]. Geometriya i grafika [Geometry and graphics]. 2014, V. 23, pp. 7–13. DOI; 10.12737/6519. (in Russian).

12. Levkin Yu.S. Nekotorye struktury gazozhidkostnykh potokov v pole vibratsii [Some structures of gas-liquid flows in the field of vibration]. Samara, SGAU Publ., 2016. 113 p. (in Russian).

13. Levkin Yu.S. Vliyanie vibratsionnykh kolebaniy na kharakteristiki struktury dvukhfaznogo potoka [The influence of vibration oscillations on the characteristics of the structure of a two-phase flow]. Izvestiya Vuzov. Severo-Kavkazskogo regiona. Tekhnicheskie nauki [Proceedings of Higher Educational Institutions. North Caucasus region. Technical science]. Novocherkassk, 2016, I. 2, pp. 112–119. (in Russian).

14. Levkin Yu.S. Zavisimost' izmeneniya skorosti dispersnoy i plenochno-dispersnoy ot vibratsionnykh uskoreniy vysokochastotnykh kolebaniy [Dependence of the change in the velocity of dispersed and film-dispersed vibrational accelerations of high-frequency oscillations]. Izvestiya Vuzov. Severo-Kavkazskogo regiona. Tekhnicheskie nauki [Proceedings of Higher Educational Institutions. North Caucasus region. Technical science]. Novocherkassk, 2016, pp. 77–82, I. 3. (in Russian).

15. Levkin Yu.S. «Metod opredeleniya vysoty volny psevdo-laminarnogo dvukhfaznogo potoka ot vibratsionnykh vozdeystviy» «Ekologiya i bezopasnost' zhiznedeyatel'nosti promyshlenno-transportnykh kompleksov» ["Method of determining the height of a pseudo-laminar two-phase flow wave from vibrational influences" "Ecology and safety of vital activity of industrial transport complexes"]. Tol'yatti, 2011, pp. 169–175, V. 4. (in Russian).

16. Levkin Yu.S. Psevdolaminarnyy dvukhfaznyy rezhim [Pseudo-laminar two-phase mode]. 2013. 94 p.

17. Levkin Yu.S. Deformatsiya zhivogo secheniya zhidkoy fazy dvukhfaznogo potoka ot vozdeystviya vibratsii Sbornik trudov II Mezhdunarodnogo ekologicheskogo kongressa «Ekologiya i bezopasnost' zhiznedeyatel'nosti promyshlenno-transportnykh kompleksov» [Deformation of the live section of the liquid phase of the two-phase flow from the effects of vibration Collection of works of the II International Ecological Congress "Ecology and safety of vital activity of industrial transport complexes"]. Tol'yatti, 2009, pp. 271–276, V. 3. (in Russian).

18. Levkin Yu.S. «Rezhim slaboy dispersnosti». Trudy KhI Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Vodosnabzhenie vodootvedenie kachestvo i effektivnost'» [The regime of weak dispersion "Proceedings of the XI International Scientific and Practical Conference" Water supply water disposal quality and efficiency"]. Kemerovo, 2008, pp. 39–44. (in Russian).

19. Levkin Yu.S. Postroenie epyurnoy nomogrammy na baze teoremy sovmeshcheniya Mezhdunarodnyy nauchno — issledovatel'skiy zhurnal [Construction of an eccentric nomogram on the basis of the coincidence theorem. International Scientific and Research Journal]. Ekaterinaburg, 2017, I. 10, pp. 69–76. D01- htths/10/23670/IRJ/2017/64/079/ (in Russian).

20. Levkin Yu.S. Poluchenie chetyrekhmernykh nomogramm na baze teoremy podobiya [Obtaining of four-dimensional nomograms on the basis of the similarity theorem]. Geometriya i grafika [Geometry and graphics]. Moscow, 2017, pp. 69–74. DOI: 10.12737/article_5953f33427942. 789301109. (in Russian).

21. Lysenko A.V. Postroenie nomogramm po fundamental'noy i prikladnoy khimii [Construction of nomograms on fundamental and applied chemistry]. Yugo-Zapadnyy Gosudarstvennyy universitet Kursk [Southwestern State University Kursk]. 2016. 18 p. (in Russian).

22. Penzin V.V. Issledovanie dvizheniya zhidkostey cherez elementy gidravlicheskikh sistem, podverzhennykh vibratsii Moskovskiy gidromeliorativnyy institute. Kand. Diss. [Investigation of the motion of liquids through elements of hydraulic systems subject to vibration. Moscow Hydromeliorative Institute. Cand. Diss.]. Moscow, 1982. 16 p. (in Russian).

23. Ivanov G.S. Nachertatel'naya geometriya [Descriptive Geometry]. Moscow, MGUL Publ., 2012. 340 p. (in Russian).

24. Zueva N.M. Nomogrammy MBOU [The nomograms of MBOU]. 2013. 15 p. (in Russian).

25. Khripunov N.V., Asanova O.Ya., Panyukova E.V. Primenenie EXCEL dlya obrabotki rezul'tatov inzhenernogo eksperimenta [Application of EXCEL for processing the results of engineering experiments]. Provedenie nauchnykh issledovaniy v oblasti mashinostroeniya. Sbornik materialov Vserossiyskoy nauchno-tekhnicheskoy konferentsii s elementami nauchnoy shkoly dlya molodezhi [Carrying out scientific research in the field of mechanical engineering. Collection of materials of the All-Russian Scientific and Technical Conference with elements of a scientific school for youth]. Tol'yatti, TGU Publ., 2009, pp. 111–116. (in Russian).

26. Khripunov N.V., Panyukov D.I. Komp'yuternye tekhnologii v nauke i proizvodstve [Computer technologies in science and production]. Tol'yatti, TGU Publ., 2013, pp. 110–113. (in Russian).

27. Khvatov B.N. Postroenie nomogramm rezhimov lentochnogo shlifovaniya na osnove matematicheskogo planirovaniya eksperimenta [Construction of nomograms of belt grinding modes on the basis of mathematical experiment planning]. Tambovskiy gosudarstvennyy tekhnicheskiy universitet [Tambov State Technical University]. Tambov, 2007. 32 p. (in Russian).

Login or Create
* Forgot password?