EXPERIMENTAL BASIS FOR THE USE OF HYPERTHERMIA IN ONCOLOGY
Rubrics: REVIEW
Abstract and keywords
Abstract (English):
This review presents the results of experimental studies on the effects of hyperthermia, at a temperature of 40–45 °C, in normal and tumor tissues. These results show that there is a strong rationale for using hyperthermia in addition to radiotherapy and/or chemotherapy in patients with cancer. The following study results are summarized. Hyperthermia has cell killing effects which specifically occur in tumor regions with hypoxia and low pH. In well perfused and well oxygenated tissues, cell damage is usually not observed at temperatures of up to 43 °C. This cell killing effect of hyperthermia is complementary to the effects of radiotherapy and chemotherapy, which treatment modalities are less effective in hypoxic or insufficiently perfused areas. In combination with radio- or chemotherapy, hyperthermia further has sensitizing effects, partly through an increase in blood flow. An important feature in radiosensitization is the inhibition of DNA repair pathways. Radiosensitizing is stronger in tumor tissue than in normal tissue when radiation and hyperthermia are given with a time interval, leading to therapeutic gain. The interaction with various drugs is related to changes in pharmacokinetics, enhancement of drug accumulation and a decrease in intracellular detoxification and damage repair. It was also observed that hyperthermia can overcome chemoresistance associated with multidrug resistance, by influencing transmembrane transport, metabolism, and the functioning of involved proteins. The effects of hyperthermia are stronger with higher temperatures and longer exposure times. Treatment with hyperthermia induces heat shock proteins (HSP’s). These may lead to thermotolerance to the next treatment when that is applied too soon. On the other hand it was found that HSP’s induce an antitumor immune response which may further add to the therapeutic effect. A stimulating effect of hyperthermia on the development of metastases could not be demonstrated in most studies. Studies with drugs in thermosensitive liposomes show that the uptake of drugs in tumor tissues can be largely enhanced. Further, it has been shown that hyperthermia considerably increases the sensitivity of cancer stem cells to radiotherapy and chemotherapy. Sofar, there is limited experience with the combination of hyperthermia and targeted agents. Nanoparticles which can be used for local heat treatment and local drug delivery are under investigation.

Keywords:
hyperthermia, malignant tumor, normal tissue, PO2, pH, heat shock proteins, thermotolerance, antitumor immunity, cancer stem cells, metastasis, thermoliposomes, magnetic nanoparticles
Text

В онкологии под гипертермией (ГТ) подразумевается нагревание опухоли при 39–46 °C с целью модификации действия лучевой, лекарственной, иммуно- и гормонотерапии. Температурный режим 39–40 °C используется при общей гипертермии, 41–46 °C – локорегионарной. В первом случае продолжительность ГТ в режиме плато составляет 180 мин и более, во 2-ом – 30–90 мин [1–6].

References

1. Kurpeshev O.K., Lebedeva T.V., Svetitskii P.V. et al. Experimental bases of hyperthermia application in oncology. – Rostov-on-Don. 2005. 164 pp. (In Russian)

2. Hildebrandt B., Wust P., Ahlers O. et al. The cellular and molecular basis of hyperthermia. Critical reviews in oncology // Hematology. 2002. Vol. 43. P. 33–56.

3. Kurpeshev O.K., Tsyb A.F., Mardynsky Yu.S. et al. Local hyper­thermia in radiation therapy of malignant tumors (experimental and clinical study). – Obninsk. 2007. 219 pp. (In Russian)

4. Van der Zee J., Vujaskovic Z., Kondo M., Sugahara T. Part I. Clinical Hyperthermia. The Kadota Fund International Forum 2004 ‒ Clinical group consensus // Int. J. Hyperthermia. 2008. Vol. 24. № 2. P. 111–122.

5. Datta N. R., Grobholz R., Puric E. et al. Enhanced tumour regression in a patient of liposarcoma treated with radiotherapy and hyperthermia: Hint for dynamic immunomodulation by hyperthermia // Int. J. Hyperthermia. 2015. Vol. 31. № 5. P. 574–577. doi: 10.3109/02656736.2015.1033482.

6. Wust P. Thermotherapy in Oncology. 1st edition. – Bremen: UNI-MED. 2016. 95 pp.

7. Barlev N.A. Hot and toxic: Hyperthermia and anti-mitotic drugs in cancer therapy // Cell Cycle. 2013. Vol. 12. № 16. P. 2533–2539.

8. Mehtala J. G., Torregrosa-Allen S., Elzey B. D. et al. Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors // Nanomedicine (London). 2014. Vol. 9. № 13. P. 1939–1955. doi:10.2217/nnm.13.209.

9. Oei A.L., Vriend L.E.M., Crezee J. et al. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all // Radiat. Oncol. 2015. Vol. 10. P. 165–178. doi: 10.1186/s13014-015-0462-0

10. Zhu S., Wang J., Xie B. et al. Culture at a higher temperature mildly inhibits cancer cell growth but enhances chemotherapeutic effects by inhibiting cell-cell collaboration // PLoS ONE. 2015. Vol. 10. № 10. e0137042. doi:10.1371/journal.

11. Griffin R. J., R. Dings P.M., Jamshidi-Parsian A., Song C. W. Mild temperature hyperthermia and radiation therapy: Role of tumour vascular thermotolerance and relevant physiological factors // Int. J. Hyperthermia. 2010. Vol. 26. № 3. P. 256–263. http://dx.doi.org/10.3109/02656730903453546

12. Song C.W. Relationship between the thermal damage in tissues and the physiological and environmental factor // Hiperthermic oncology 1986 in Japan. Mag. Bros. Inc. 1987. P. 21–26.

13. Waterman F.M., Neringer R.E., Moylan D.J., Leeper D.B. Response of human blood flow to local hyperthermia // Int. J. Radiat. Oncol. Biol. Phys. 1987. Vol. 13. P. 75–82.

14. Song C.W., Griffin R., Shakil A. et al. Tumor PO2 increased by mild temperature hyperthermia // Hyperthermic Oncol. Roma. 1996. Vol. II. P. 783–785.

15. Song C. W., Shakil A., Osborn J. L., Iwata K. Tumour oxygenation is increased by hyperthermia at mild temperatures // Int. J. Hyperthermia. 2009. Vol. 25. № 2. P. 91–95.

16. Song C.W., Griffin R., Park H.J. Influence of tumor pH on therapeutic response // In: Cancer Drug Discovery and Development: Cancer Drug Resistance. Ed. B.A. Teicher. – Humana Press. 2006. P. 21–42.

17. Wike-Hooley J.L., van den Berg A.P, van der Zee J., Reinhold H.S. Human tumour pH and its variation // Eur. J. Cancer Clin. Oncol. 1985. Vol. 21. P. 785–791.

18. Van den Berg A., Wike-Hooley J.L., Broekmayer-Reurink M.P. et al. The relationship between the unmodified initial tissue pH of human tumours and the response to combined radiotherapy and local hyperthermia treatment // Eur. J. Cancer Clin. Oncol. 1989. Vol. 25. P. 73–78.

19. Cook J.A., Fox M.H. Effects of acute pH 6.6 and 42.0 oC heating on the intracellular pH of chinese hamster ovary cells // Cancer Res. 1988. Vol. 48. P. 496–502.

20. Cook J.A., Fox M.H. Effects of chronic pH 6.6 on growth, intracellular pH, and response to 42.0 oC hyperthermia of chinese hamster ovary cells // Cancer Res. 1988. Vol. 48. P. 2417–2420.

21. Yarmonenko S.P., Wainson A.A. Radiobiology of humans and animals. – Moscow. 2004. 549 pp. (In Russian)

22. Herman T.S., Teicher B.A., Holden S.A., Collins L.S. Interaction of hyperthermia and radiation in murine cells: hypoxia and acidisis in vitro, tumor subpopulations in vivo // Cancer Res. 1989. Vol. 49. P. 3338–3343.

23. Robinson J.E., Wisenberg M.J., McCready W.A. Radiation and hyperthermal response of normal tissue in situ // Radiology. 1974. Vol. 113. № 1. P. 195–198.

24. Stewart F.A., Denekamp J. The therapeutic advantage of combined heat and x-rays on a mouse fibrocarcinoma // Brit. J. Radiol. 1978. Vol. 51. № 604. P. 307–316.

25. Dewey W.C. The search for critical targets damaged by heat // Radiat. Res. 1989. Vol. 20. P. 191–204.

26. Crile G.J. Heat as an adjunct to the treatment of cancer // Clevland Clin. 1961. № 28. P. 75–89.

27. Overgaard K., Overgaard J. Radiation sensitizing effect of heat // Acta Radiol. 1974. Vol. 13. № 6. P. 501–511.

28. Hume S.P., Field S.B. Hyperthermic sensitization of mouse intestine to damage by X-rays: the effect of sequence and temporal separation of the two treatments // Brit. J. Radiol. 1978. Vol. 51. № 604. P. 302–307.

29. Myers R., Field R.B. The respons of the rat tail on to combined heat and X-rays // Brit. J. Radiol. 1977. Vol. 52. P. 581–586.

30. Hill S.A., Denekamp J. The respons of six mouse tumours to combined heat and x-rays; implications for therapy // Brit. J. Radiol. 1979. Vol. 52. P. 209–218.

31. Overgaard J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo // Int. J. Radiat. Oncol. Biol. Phys. 1981. Vol. 6. № 11. P. 1507–1517.

32. Overgaard J. Fractionated radiation and hyperthermia: experimental and clinical studies // Cancer. 1981. Vol. 48. № 5. P. 1116–1123.

33. Jansen W., Scuren E., Breur K. Thermal enhancement of the radiation response of the skin and mammary carcinoma in mice // In: Cancer Therapy by Hyperthermia and Radiation. Ed. by Streffer C. et al. –Baltimore, Munich. 1978. P. 255–256.

34. Stewart F.A., Denekamp J. Loss of therapeutic advantage for combined heat and x-rays with fractionation // In: Natl. Cancer Inst. Monorgr. –Washington. 1982. № 61. P. 291–293.

35. Horsman M. R. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation // Int. J. Hyperthermia. 2015. Vol. 31. № 5. P. 453–459. doi:10.3109/02656736.2015.1024289.

36. Brown S. L., Li X.L., Pai H.H. et al. Observations of thermal gradients in perfused tissues during water bath heating // Int. J. Hyperthermia. 1992. Vol. 8. № 2. P. 275–287.

37. Blasiak J., Widera K., Pertyñski T. Hyperthermia can differentially modulate the repair of doxorubicin-damaged DNA in normal and cancer cells // Acta Biochimica Polonica. 2003. Vol. 50. № 1. P. 191–195.

38. Ahmed K., Zaidi S. F. Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis // J. Pak. Med. Assoc. 2013. Vol. 63. № 4. P. 504–508

39. Tang Y., McGoron A. J. Increasing the rate of heating: A potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy // Int. J. Hyperthermia. 2013. Vol. 29. № 2. P. 145–155. doi: 10.3109/02656736.2012.760757

40. Honess D.J., Bleehen N.M. Thermochemotherapy with cis-platinum, CCNU, BCNU chlorambucil and melphalan only // Brit. J. Radiol. 1985. Vol. 58. P. 63–72.

41. Mohamed F., Marchettini P., Stuart O.A. et al. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia // Ann. Surg. Oncol. 2003. Vol. 10. № 4. P. 463–468.

42. Mohamed F., Stuart O.A, Glehen O. et al. Optimizing the factors which modify thermal enhancement of melphalan in a spontaneous murine tumor // Cancer Chemother. Pharmacol. 2006. Vol. 58. № 6. P. 719–724.

43. Urano M., Wong K.-H., Reynolds R., Begley J. The advantageous use of hypoxic tumor cells in cancer therapy: Identical chemosensitization by metronidazole and misonidazole at moderately elevated temperatures // Int. J. Hyperthermia. 1995. Vol. 11. P. 379–388.

44. Hazen G., Ben-Hur E., Yerushalmi A. Synergism between hyperthermia and cyclophosphamide in vivo: the effect of dose fractionation // Eur. J. Cancer. 1981. Vol. 17. P. 681–684.

45. Honess D.J., Bleehen N.M. Sensitivity of normal mouse marrow and RIF-1 tumor to hyperthermia combined with cyclophosphamide pr BCNU: A lack of therapeutic gain // Brit. J. Cancer. 1982. Vol. 46. P. 236–248.

46. Dahl O., Mella O. Effects of timing and sequence of hyperthermia and cyclophosphamide on a neuregenic rat tumor in vivo // Cancer. (Philad.). 1983. Vol. 52. P. 983–987.

47. Urano M., Kim M.S., Kenton L.A., Li M.L. Effect of thermochemotherapy (combined cyclophosphamide and hyperthermia) given at various temperatures with or without glucose administration on a murine fibrocarcoma // Cancer Res. 1985. Vol. 45. P. 4162–4166.

48. Zachariae C., Overgaard J. Interactions of radiation, cyclophosphamide and nimorazole in a C3H mammary carcinoma in vivo // Int. J. Radiat. Oncol. Biol. Phys. 1986. Vol. 12. № 8. P. 1445–1448.

49. Monge O.R., Rofstad E.K., Kaalhus O. Thermochemotherapy in vivo of a C3H mouse mammary carcinoma: Single fraction heat and drug treatment // Eur. J. Cancer. 1965. Vol. 24. № 10. P. 1661–1669.

50. Matsushita S., Reynolds R., Urano M. Synergism between alkylating agent and cis-platin with moderate local hyperthermia: the effect of multidrug chemotherapy in an animal system // Int. J. Hyperthermia. 1993. Vol. 9. № 2. P. 285–296.

51. Adwankar M.K., Chitius M.P. Effect of hyperthermia alone and in combination with anticancer drugs on the viability of P388 leucemic cells // Tumori. 1984. Vol. 70. № 3. P. 231–234.

52. Kuroda M., Urano M., Reynolds R. Thermal enhancement of the effect of ifosfamide against a spontaneous murine fibrosarcoma, FSa-II // Int. J. Hyperthermia. 1997. Vol. 13. № 1. P. 125–131.

53. Werthmoller N., Frey B., Wunderlich R. et al. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor ZVAD-fmk induces anti-tumor immunity in a HMG B1-, nucleotide- and T-cell-dependent manner // Cell Death Dis. 2015. Vol. 14. № 6. E1761. doi: 10.1038/cddis. 2015.129.

54. Alberts D.S., Peng Y.-M., Chen H.-S. et al. Therapeutic synergism of hyperthermia – cis-platinum in a mouse tumor model // Int. Natl. Cancer Inst. 1980. Vol. 65. P. 231–239.

55. Wondergem J., Bulger R. E., Strebel F. R. et al. Effects of cis-diamminedichlorplatinum (II) combined with whole body hyperthermia on renal injury // Cancer Res. 1988. Vol. 48. P. 440–446.

56. Lindegaard J., Radacic M., Khalil A.A. et al. Cisplatin and hyperthermia treatment of a C3H mammary carcinoma in vivo // Acta Oncologica 1992. Vol. 31. P. 347–351.

57. Van Bree C., Rietbroek R., Schopman E.M. et al. Local hyperthermia enhances the effect of cis-diamminedichloro-platinum (II) on non-irradiated and preirradiated rat solid tumors // Int. J. Rad. Oncol. Biol. Phys. 1996. Vol. 36. P. 135–140.

58. Chen X., Ma S., Mou H., Feng J. Synergistic effects of hyperthermia and cisplatin on human lung adenocarcinoma cell line H1299 // Chinese-German J. Oncol. 2007. Vol. 6. № 1. P. 5–8.

59. Itoh Y., Yamada Y., Kazaoka Y. et al. Combination of chemotherapy and mild hyperthermia enhances the anti-tumor effects of cisplatin and adriamycin in human bladder cancer T24 cells in vitro // Exper. Ther. Med. 2010. Vol. 1. № 2. P. 319–323. doi:10.3892/etm_00000049.

60. Muller M., Chére M., Dupré P.-F. et al. Cytotoxic effect of hyperthermia and chemotherapy with platinum salt on ovarian cancer cells: results of an in vitro study // Eur. Surg. Res. 2011. Vol. 46. № 3. P. 139–147. doi: 10.1159/000324395.

61. Muenyi C. S., Pinhas A. R., Fan T. W. et al. Sodium arsenite ± hyperthermia sensitizes p53-expressing human ovarian cancer cells to cisplatin by modulating platinum-dna damage responses // Toxicol. Sci. 2012. Vol. 127. № 1. P. 139–149. doi:10.1093/toxsci/kfs085 PMCID: PMC3327868.

62. Wainson A.A., Meshcherikova V.V., Tkachev S.I. Radio-thermomodifying effect of platinum-based drugs, gemzar and taxanes for tumor cells in vitro // Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ (‘Medical Radiology and Radiation safety’). 2016. Vol. 61. № 2. P. 25–29. (In Russian. English abstracts. PubMed)

63. Huang T., Gong W., Li X. et al. Enhancement of osteosarcoma cell sensitivity to cisplatin using paclitaxel in the presence of hyperthermia // Int. J. Hyperthermia. 2013. Vol. 29. № 3. P. 248–255.

64. Urano M., Majima H., Kahn J. Cytotoxic effect of 1, 3 bis(2-chloroethyl)-N-nitrosourea at elevated temperatures: Arrhenius plot analysis and tumor response // Int. J. Hyperthermia. 1991. Vol. 7. P. 499–510.

65. Kosmidis P.A., Uzunoglon N., Elemenoglon J., Koffaidis S. Combination of hyperthermia and methotrexate in the treatment of transplanted Walker sarcoma // Chemotherapie. 1988. Vol. 7. P. 184–188.

66. Kido Y., Kuwano H., Maehara Y. et al. Increased cytotoxicity of low-dose, long-duration exposure to 5-fluorouracil of V-79 cells with hyperthermia // Cancer Chemother Pharmacol. 1991. Vol. 28. P. 251–254.

67. Maehara Y., Sacagushi Y., Takahashi I et al. 5-fluorouracil’s is enhanced both in vitro and in vivo by concomitant treatment with hyperthermia and dipiridamole // Cancer Chemother. Pharmacol. 1992. Vol. 29. P. 257–260.

68. Mini E., Dombrowski J., Moroson B.A., Bertino J.R. Cytotoxic effects of hyperthermia, 5-fluoroucil and their combination on a human leukemia T-lymphoblast cell line, CCRF-CEM // Eur. J. Cancer Oncol. 1986. Vol. 22. P. 927–934.

69. Iwagaki H., Fuchimoto S., Shiiki Sh. et al. A mechanism for potentiation of the cytotoxic effects of antimetabolites drugs (FT-207, 5Fu) by hyperthermia // Res. Commun. Chem. Patol. Pharmacol. 1988. Vol. 62. № 2. P. 353–360.

70. Urano M., Kahn J., Reynolds R. The effect of 5-fluorouracil at elevated temperatures on a spontaneous mouse tumour: Arrhenius analysis and tumour response // Int. J. Radiat. Biol. 1991. Vol. 59. P. 239–249.

71. Liu T., Ye Y.-W., Zhu A-L. et al. Hyperthermia combined with 5-fluorouracil promoted apoptosis and enhanced thermotolerance in human gastric cancer cell line SGC-7901 // Onco Targets Ther. 2015. Vol. 8. P. 1265–1270. doi: 10.2147/OTT.S78514.

72. Raoof M., Zhu C., Cisneros B.T. et al. Hyperthermia inhibits recombination repair of gemcitabine-stalled replication forks // J. Natl. Cancer Inst. 2014. Vol. 106. № 8. P. 1–10. dju183 doi: 10.1093/jnci/dju183.

73. Overgaard J. Combined adriamycin and hyperthermia treatment of a murin mammary carcinoma in vivo // Radiat. Res. 1976. Vol. 36. P. 3077–3081.

74. Marmor J.B., Kozak D., Hahn G.M. Effect of systemically administered bleomycin or adriamycin with local on primary tumor or lung metastases // Cancer Treat. Reports. 1979. Vol. 63. P. 1279–1290.

75. Yoshida M., Kato T., Murato T. et al. Antitumor effectiveness of adriamycin combined with hyperthermia (in vivo examination) // Hyperthermic Oncology 1986 in Japan. Mag. Broc. Inc. 1987. P. 169–170.

76. Ohnoshi T., Ohnuma T., Beranek J.T. et al. Combined cytotoxicity effect of hyperthermia and antracycline antibiotics on human tumor cells // J. Natl. Cancer Inst. 1985. Vol. 74. № 2. P. 275–281.

77. Szczepanski L.V., Trott K.P. The combined effect of bleomycin and hyperthermia on the adenosarcoma 284 of the C3H mouse // Eur. J. Cancer. 1981. Vol. 17. P. 997–1000.

78. Dahl O., Mella O. Enhanced effect of combined hyperthermia and chemotherapy (bleomycin, BCNU) in a neurogenic rat tumour (BT4A) in vivo // Anticancer Res. 1982. Vol. 2. P. 359–364.

79. Hassanzadeh M., Charman L.V. Thermal enhancement of bleomycin-induced growth, delay in a sqamous carcinoma of CBA/Ht mice // Eur. J. Cancer. 1982. Vol. 18. P. 795–707.

80. Harnicek D., Kampmann E., Lauber K. et al. Hyperthermia adds to trabectedin effectiveness and thermal enhancement is associated with BRCA2 degradation and impairment of DNA homologous recombination repair // Int. J. Cancer. 2016. Vol. 139. № 2. P. 467–479. doi: 10.1002/ijc.30070.

81. Song X., Kim S.-Y., Zhou Z. et al. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells // Cell Death Dis. 2013. Vol. 4. № 4. e577. doi: 10.1038/cddis.2013.104

82. Miyamoto R., Oda T., Hashimoto S. et al. Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer // Cancer Sci. 2016. Vol. 107. № 4. P. 514–520.

83. Verhulst J. Effects of bevacizumab and hyperthermia in a rodent model of hyperthermic intraperitoneal chemotherapy (HIPEC) // Int. J. Hyperthermia. 2013. Vol. 29. № 1. P. 62–70. doi:10.3109/02656736.2012.753738.

84. Ohizumi Y., Murayama C, Maezawa H, Mori T. The effect of hypoxic radiosensitizer after mild hyperthermia in C3H mammary carcinoma // Tokai J. Exper. Clin. Med. 1984. Vol. 9. № 4. P. 331–337.

85. Murakami A., Koga S., Maeta M. et al. Assesment of combined effects of interferon with hyperthermia on a human colon cancer cell line // In: Hyperthermic Oncology 1986 in Japan. 1987. P. 219–220.

86. Hahn G.M. Hyperthermia and Cancer. – N. Y.: Plenum Press. 1982. 256 pp.

87. Nagaoka S., Kawasaki S., Karino J. et al. In vitro effects of hyperthermia on the cellular uptake of adriamycin // J. Radiat. Res. 1987. Vol. 28. P. 262–267.

88. Bidwell III G. L., Perkins E., Hughes J. et al. Thermally targeted delivery of a c-myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model // PLoS ONE. 2013. Vol. 8. № 1. P. 1–12. e55104.

89. Bleehen N.M. Heat and drugs: current status of thermochemotherapy // In: Biology Basis Radiotherapy. – Amsterdam; Oxford; New York: Elsevier Sci Publ. B.V. 1983. P. 321–332.

90. Zarkris E.L., Dewhrist M.W., Riviere J.E. et al. Pharmacokinetics and toxicity of intraperitoneal cis-platin with regional hyperthermia // J. Clin. Oncol. 1987. Vol. 5. P. 1613 – 1620.

91. Murthy M.S., Rao L.N., Khandekar J.D., Scanlon E.F. Enhanced therapeutic eficcacy of cisplatin by combination with diethyldithiocarbamate and hyperthermia in a mouse model // Cancer Res. 1987. Vol. 47. P. 774–779.

92. Elkon D., Lacher D.A., Rinehart L. et al. Effect of ultrasound-induced hyperthermia and cis-diamminedichloride platinum I on murine renal function // Cancer. (Philad.). 1982. Vol. 49. P. 25–29.

93. Baryshnikov A.Yu. Nanostructured liposomal systems as a means of delivery of antitumor drugs // Vestnik Rossiiskoi akademii meditsinskikh nauk (‘Annals of the Russian academy of Medical Sciences’). 2012. № 3. P. 23–31. (In Russian. English abstracts. PubMed)

94. Kneidl B., Peller M., Winter G. et al. Thermosensitive liposomal drug delivery systems: state of the art review // Int. J. Nanomedicine. 2014. Vol. 9. P. 4387–4398.

95. Yatvin M.B., Weinstein J.N., Dennis W.H. Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia // Science. 1978. Vol. 202. P. 1290–1293.

96. Ponce A.M., Vujaskovic Z., Yuan F. et al. Hyperthermia mediated liposomal drug delivery // Int. J. Hyperthermia. 2006. Vol. 22. № 3. P. 205–213.

97. Koning G. A., Eggermont A. M. M., Lindner L. H. et al. hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors // Pharm. Res. 2010. Vol. 27. № 8. P. 1750–1754.

98. Landon C. D., Park J.-Y. , Needham D., Dewhirst M.W. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer // Open Nanomedicine J. 2011. Vol. 3. P. 38–64.

99. López-Noriega A., Hastings C.L., Ozbakir B. et al. Hyperthermia-induced drug delivery from thermosensitive liposomes encapsulated in an injectable hydrogel for local chemotherapy // Adv. Healthcare. Mater. 2014. Vol. 6. P. 854–859. doi: 10.1002/adhm.201300649.

100. Lokerse W.J.M., Kneepkens E.C.M., ten Hagen T.L.M. et al. In depth study on thermosensitive liposomes: Optimizing formulations for tumor specific therapy and in vitro to in vivo relations // Biomaterialis. 2016. Vol. 82. P. 138–150. http://dx.doi.org/10.1016/j.biomaterials.2015.12.023.

101. Tazina E.V., Meshcherikova V.V., Ignatieva E.V. et al. Biopharmaceutical studies of a temperature-sensitive liposomal drug dosage form of doxorubicin // Rossiysky Bioterapevtichesky Zhurnal (‘Russian Journal of Biotherapy’). 2009. Vol. 8. № 1. P. 40–47. (In Russian. English abstracts. PubMed)

102. Baryshnikova M.A., Baryshnikov A.Yu., Afanasyeva D.A. Molecular mechanisms to overcome multiple drug resistance with liposomal antitumor drugs // Rossiysky bioterapevtichesky zhurnal (‘Russian journal of biotherapy’). 2015. Vol. 14. № 1. P. 3–9.

103. Yarmolenko P.S, Zhao Y., Landon C. et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours // Int. J. Hyperthermia. 2010. Vol. 26. P. 485–498.

104. May J. P., Ernsting M. J., Undzys E., Li S. D. Thermosensitive liposomes for the delivery of gemcitabine and oxaliplatin to tumors // Mol. Pharmaceutics. 2013. Vol. 10. P. 4499−4508. dx.doi.org/10.1021/mp400321e.

105. Li L., ten Hagen T. L.M., Haeri A. et al. A novel two-step mild hyperthermia for advanced liposomal chemotherapy // J. Controll Release. 2014. Vol. 174. P. 202–208.

106. Zimmermann K., Hossann M., Hirschberger J. et al. A pilot trial of doxorubicin containing phosphatidyldiglycerol based thermosensitive liposomes in spontaneous feline soft tissue sarcoma // Int. J. Hyperthermia. 2017. Vol. 33. № 2. P. 178–190.

107. Ropert C. Liposomes as a gene delivery system // Braz. J. Med. Biol. Res. 1999. Vol. 32. № 2. P. 163–169.

108. Celsion Corporation Announces Updated Overall Survival Data from HEAT Study of ThermoDox® in Primary Liver Cancer. Data Continue to Show a Statistically Significant Improvement in Overall Survival, Translating to a Greater Than Two-Year Survival Benefit Following Treatment with ThermoDox® Plus Optimized. 2015. Available at: http://investor.celsion.com/releasedetail.cfm?ReleaseID=926288

109. Bettaieb A., Averill-Bates D.A. Thermotolerance induced at a mild temperature of 40 °C alleviates heat shock-induced ER stress and apoptosis in HeLa cells // Biochim. Biophys. Acta. 2015. Vol. 1853. № 1. P. 52–62. doi: 10.1016/j.bbamcr.2014.09.016.

110. Kolesnikova A.I., Kurpeshev O.K., Konoplyannikov A.G., Lepekhina L.A. Induction of heat tolerance in clonogenic cells of Lewis lung carcinoma // Eksperimental’naya Onkologiya (‘Experimental Oncology’). Kiev. Naukova Dumka. 1986. Vol. 8. № 4. P. 66–67. (In Russian)

111. Bresler S.E., Beketova A.G., Noskin L.A. et al. Thermo-induced radiation resistance of cells // Radiobiologia (‘Radiobiology’). 1984. № 5. P. 579–583. (In Russian. English abstracts. PubMed)

112. Miyakoshi R.E.J., Heki S., Kano E. Cellular responses to hyperthermia and radiation in Chinese hamster cells // In: Modification of Radiosensitivity in Cancer Treatment. Ed. Sugahara T. – Tokyo, New York, London, Monreal. Academic Press. 1984. P. 335–350.

113. Hettinga J.V.E., Lemstra W., Konings A.W.T., Kampinga H.H. Cisplatin sensitivity and thermochemosensitisation in thermotolerant cDDP-sensitive and -resistant cell lines // Brit. J. Cancer. 1995. Vol. 71. P. 498–504.

114. Kregel K. C. Invited Review: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance // J. Appl. Physiol. 2002. Vol. 92. P. 2177–2186.

115. Li G. C., Mivechi N. F., Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia // Int. J. Hyperthermia. 1995. Vol. 11. № 4. P. 459–488.

116. Eng J. W.-L., Reed C. B., Kokolus K. M., Repasky E. A. Housing temperature influences the pattern of heat shock protein induction in mice following mild whole body hyperthermia // Int. J. Hyperthermia. 2014. Vol. 30. № 8. P. 540–546. doi:10.3109/02656736.2014.981300.

117. Asea A. A. A., Milani V., Calderwood S.K. Heat shock proteins in physiology and pathology: the Berlin meeting // Cell Stress & Chaperones. 2007. Vol. 12. № 3. P. 205–208.

118. Ando K., Suzuki Y., Kaminuma T. et al. Hyperthermia-induced tumor-specific T-cell immunity and its role in the therapeutic efficacy of hyperthermia // Thermal Med. 2014. Vol. 30. Suppl. P. 144–150.

119. Frey B., Weiss E-M., Rubner Y. et al. Old and new facts about hyperthermia-induced modulations of the immune system // Int. J. Hyperthermia. 2012. Vol. 28. № 6. P. 528–542. doi:10.3109/02656736.2012.677933.

120. Li D. Y., Tang Y. P., Zhao L. Y. et al. Antitumor effect and immune response induced by local hyperthermia in B16 murine melanoma: Effect of thermal dose // Oncol. Letters. 2012. Vol. 4. P. 711–718. doi: 10.3892/ol.2012.804

121. Pelz J. O. W., Vetterlein M., Grimmig T. et al. Hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis: role of heat shock proteins and dissecting effects of hyperthermia // Ann. of Surg. Oncol. 2013. Vol. 20. № 4. P. 1105–1113.

122. Hu R., Ke X., Jiang H et al. The effect of IL-2 treatment combined with magnetic fluid hyperthermia on lewis lung-cancer-bearing mice // Eur. J. Cancer. 2014. Vol. 50. e17.

123. Wang H., Zhang L., Shi Y. et al. Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats // Oncol. Lett. 2014. Vol. 7. № 3. P. 764–770. doi: 10.3892/ol.2014.1803. PMCID: PMC3919910.

124. Finkela P., Freyc B., Mayera F. et al. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia // Oncoimmunology 2016. Vol. 5. NO. 6. e1101206 http://dx.doi.org/10.1080/2162402X.2015.1101206.

125. Topçul M., Çetin İ. An innovative therapeutic approach in oncology: Hyperthermia // Eur. Int. J. Sci. Technol. 2013. Vol. 2. № 9. P. 73–80.

126. Ba M.C., Long H., Zhang X-L. et al. Thermal enhancement sensitises gastric cancer stem cells to chemotherapy through ROS-modulation-induced autophagic death // Eur. J. Cancer. 2014. Vol. 50. Suppl. 4. e5 (OP0014).

127. Mouratidis P., Rivens I., Ter Haar G. A study of thermal dose induced autophagy, apoptosis and necroptosis in colon cancer cells // Int. J. Hyperthermia. 2015. Vol. 31. № 5. P. 476–488. doi: 10.3109/02656736.2015.

128. Dayanc B.E., Beachy S.H., Ostberg J.R., Repasky E.A. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses // Int. J Hyperthermia. 2008. Vol. 24. № 1. P. 41–56.

129. Lee C-T., Mace T., Repasky E. A. Hypoxia-driven immunosuppression: A new reason to use thermal therapy in the treatment of cancer? // Int. J. Hyperthermia. 2010. Vol. 26. № 3. P. 232–246. doi: 10.3109/02656731003601745.

130. Toraya-Brown S., Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer // Int. J. Hyperthermia. 2014. Vol. 30. № 8. P. 531–539. doi:10.3109/02656736.2014.968640.

131. Toraya-Brown S., Sheen M. R., Zhang P. et al. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors // Nanomedicine. 2014. Vol. 10. № 6. P. 1273–1285. doi: 10.1016/j.nano.2014.01.011.

132. Shevtsov M.A., Khachatryan V.A., Margulis B.A. The use of heat shock proteins in clinical oncology // Sovremennaya Onkologiya (‘Modern Oncology’). 2012. № 1. P. 63–68. (In Russian)

133. Noessner E. Thermal stress-related modulation of tumor cell physiology and immune responses // Cancer Immunol. Immunother. 2006. Vol. 55. № 3. P. 289–291.

134. Srivastava P.K., Das M.R. The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen // Int. J. Cancer. 1984. Vol. 33. № 3. P. 417–422.

135. Baldueva I.A., Novik A.V., Moiseenko V.M. et al. Clinical study of a vaccine based on autologous dendritic cells in patients with skin melanoma // Onkologiya (‘Oncology’). 2012. Vol. 58. P. 212–221. (In Russian. English abstracts. PubMed)

136. Ciocca D. R., Calderwood S. K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications // Cell Stress & Chaperones. 2005. Vol. 10. № 2. P. 86–103.

137. Singh I.S., Hasday J.D. Fever, hyperthermia and the heat shock response // Int. J. Hyperthermia. 2013. Vol. 9. № 5. P. 423–435. doi: 10.3109/02656736.2013.808766.

138. Sottile M. L., Losinno A. D., Fanelli M. A. et al. Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines // Int. J. Hyperthermia. 2015. Vol. 31. № 5. P. 464–475.

139. Terunuma H., Deng X., Toki A. et al. Effects of hyperthermia on the host immune system: from nk cell-based science to clinical application // Therm. Med. 2012. Vol. 28. № 1. P. 1–9.

140. Ito Y., Kobayashi Y., Yatagawa A. et al. Effects of whole-body heat treatment on T cell-mediated immune response in cancer patients // Therm. Med. 2014. Vol. 30.Suppl. P. 171.

141. Ito A., Matsuoka F., Honda H.,Kobayashi T. Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanopracticles in an experimental subcutaneous murine melanoma // Cancer Immunol. Immunother. 2004. Vol. 53. P. 26–32.

142. Knippertz I., Stein M. F., Dorrie J. et al. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies // Int. J. Hyperthermia. 2012. Vol. 27. № 6. P. 591–603.

143. Young R. V. Mechanisms to improve chemotherapy effectiveness // Cancer (Philad.) 1990. Vol. 65. № 3. P. 814–818.

144. Sergeeva N.S., Storozhenko I.V., Marshutina N.V. Multiple drug resistance as one of the possible mechanisms of clinical chemoreasistance of human tumors // Rossijskij Onkologicheskij Zhurnal (‘Russian Journal of Oncology’). 1996. № 3. P. 51–55. (In Russian. English abstracts. PubMed)

145. Svirnovsky A.I., Pasyukov V.V. Molecular basis of the phenomenon of chemo- and radioresistance in tumor processes // Meditsinskie Novosti (‘Medical News’). 2007. № 11. P. 7–9. (In Russian)

146. Stein U., Jürchott K., Schläfke M., Hohenberger P. Expression of multidrug resistance genes mvp, mdr1, and mrp1 determined sequentially before, during, and after hyperthermic isolated limb perfusion of soft tissue sarcoma and melanoma patients // J. Clin. Oncol. 2002. Vol. 20. P. 3282–3292.

147. Stavrovskaya A.A., Gens G.P. Some new aspects of investigating multiple drug resistance of tumor cells //Uspekhi Molekulyarnoj Onkologii (‘Success in molecular oncology’). 2014. Vol. 1. № 1. P. 5–11. doi: 10.17650/2313-805X.2014.1.1.5-11 (In Russian. English abstracts. PubMed)

148. Saxena M., Stephens M.A., Pathak H., Rangarajan A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters // Cell Death Dif. 2011. Vol. 2. e179.

149. Pinto C.A., Widodo E., Waltham M., Thompson E.W. Breast cancer stem cells and epithelial mesenchymal plasticity – Implications for chemoresistance // Cancer Lett. 2013. pii: S0304-3835(13)00453-9. doi:10.1016/j.canlet.2013.06.003. .

150. Saprin A.N., Kalinina E.V., Babenko M.D. Biochemical mechanisms of development and regulation of multiple drug resistance of cancer cells // Uspekhi Biologicheskoi Khimii (‘Success in Biological Chemistry’). 1996. Vol. 36. P. 213–265. (In Russian. English abstracts. PubMed)

151. Konovalova N.P. Paradoxes of chemotherapy // Voprosy Onkologii (‘Problems in Oncology’). 1992. № 10. P. 1155–1163. (In Russian. English abstracts. PubMed)

152. Van Bree C., Van der Maat B., Ceha H.M. et al. Inactivation of p53 and of pRb protects human colorectal carcinoma cells against hyperthermia-induced cytotoxicity and apoptosis // J. Cancer Res. Clin. Oncol. 1999. Vol. 125. P. 549–555.

153. Gasser M., Vetterlein M., Lazariotou M. et al. Hsp and MDR gene upregulation during hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinosis. 2011 ASCO Annual Meeting // J. Clin. Oncol. 2011. Vol. 29. Supplement. Abstract e21072.

154. Huang C., Li Y., Cao P. et al. Synergistic effect of hyperthermia and neferine on reverse multidrug resistance in adriamycin-resistant SGC7901/ADM gastric cancer cells // J Huazhong Univ. Sci. Technol. Med. Sci. 2011. Vol. 31. № 4. P. 488–496. doi: 10.1007/s11596-011-0478-0.

155. Hettinga J.V.E., Lemstral W., Meijer C. et al. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells // Brit. J. Cancer. 1997. Vol. 75. № 12. P. 1735–1743.

156. Keizer H. G., Joenje H. Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil // J. Natl. Cancer. Inst. 1989. Vol. 81. P. 706–709.

157. Thiebaut F., Currier S.J., Whitaker J. et al. Activity of the multidrug transporter results in alkalinization of the cytosol: measurement of cytosolic pH by microinjection of a pH-sensitive dye // J. Histochem. Cytochem. 1990. Vol. 38. P. 685–690.

158. Simon S.M., Schindler M. Cell biological mechanisms of multidrug resistance in tumors // Proc. Natl. Acad. Sci. USA. 1994. Vol. 91. P. 3497–3504.

159. Heddleston J. M., Li Z., Lathia J. D. et al. Hypoxia inducible factors in cancer stem cells // Brit. J. Cancer. 2010. Vol. 102. № 5. P. 789–795. doi: 10.1038/sj.bjc.6605551.

160. Stewart M. H. Cancer drug discovery and development: stem cells and cancer // Brit. J. Cancer. 2010. Vol. 102. № 4. P. 783. doi: 10.1038/sj.bjc.6605525.

161. Chaffer C.L., Brueckmann I., Scheel C. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state // Proceed. Nat. Acad. Sci. USA (PNAS). 2011. Vol. 108. № 19. P. 7950–7955. doi: 10.1073/pnas.1102454108.

162. Ablett M.P., Singh J.K., Clarke R.B. Stem cells in breast tumours: Are they ready for the clinic? // Eur. J. Cancer. 2012. Vol. 48. № 14. P. 2104–2116.

163. Conley S.J., Gheordunescu E., Kakarala P. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. № 8. P. 2784–2789. doi: 10.1073/pnas.1018866109.

164. Giuseppe P. P., Paola D., Roberto O. Heating cancer stem cells to reduce tumor relapse // Breast Cancer Res. 2011. № 13. P. 305.

165. Sadhukha T., Niu L., Wiedmann T.S., Panyam J. Effective elimination of cancer stem cells by magnetic hyperthermia // Mol. Pharm. 2013. Vol. 10. № 4. P. 1432–1441. doi: 10.1021/mp400015b.

166. Chen D.-R., Lu D.-Y., Lin H.-Y., Yeh W.-L. mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer // BioMed Res. Int. Vol. 2014. Article ID 532161. 10 pages. http://dx.doi.org/10.1155/2014/532161.

167. Lee H., Park H. J., Park C.-S. et al. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined // PLoS ONE. 2014. Vol. 9. № 2. e87979. www.plosone.org. doi: 10.1371/journal.pone.0087979.

168. Kobayashi T. Cancer hyperthermia using magnetic nanoparticles // Biotechnol. J. 2011. Vol. 6. P. 1342–1347.

169. Alvarez-Berríos M.P, Castillo A., Rinaldi C. Torres-Lugo M. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines // Int. J. Nanomed. 2014. Vol. 9. P. 145–153.

170. Basel M.T, Balivada S., Wang H. et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model // Int. J. Nanomed. 2012. Vol. 7. P. 297–306.

171. Dey S., Maiti T.K. Superparamagnetic nanoparticles and RNAi-mediated gene silencing: evolving class of cancer // Diagn. Therap. J. Nanomaterials. Vol. 2012 (2012), Article ID 129107. 15 pp. http://dx.doi.org/10.1155/2012/129107.

172. Franke K., Kettering M., Lange K. et al. The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels // Int. J. Nanomedicine. 2013. Vol. 8. P. 351–363. doi: 10.2147/IJN.S37465.

173. Huang H.S., Hainfeld J.F. Intravenous magnetic nanoparticle cancer hyperthermia // Int. J. Nanomedicine. 2013. Vol. 8. № 1. P. 2521–2532.

174. San B.H., Moh S.H, Kim K.K. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current // Int. J. Hyperthermia. 2013. Vol. 29. № 2. P. 99–105. doi:10.3109/02656736.2012.760137.

175. Miyagawa T., Saito H., Minamiya Y. et al. Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low Curie temperature // Int. J. Clin. Oncol. 2014. Vol. 19. № 4. P. 722–730.

176. Perigo E. A., Hemery G., Sandre O. et al. Fundamentals and advances in magnetic hyperthermia // J. Phys. D: Applied Phys. Rev. 2015. Vol. 2. 041302.

177. Dickson J.A., Shah S.A. Hyperthermia: the immune response and tumor metastases // Natl. Cancer Inst. Monogr. 1982. Vol. 61. P. 183–192.

178. Shah S.A., Jain B.E., Finney P.L. Enhanced metastasis formation by combined hyperthermia and hyperglycemia in rats bearing walker 256 carcinosarcoma // Cancer Lett. 1983. Vol. 19. № 3. P. 317–323.

179. Nathanson S.D., Haas G.P., Bobzowski R. et al. Regional lymph and pulmonary metastases after local hyperthermia of melanomas in C57Bl/6 mice // Int. J. Radiat. Oncol. Biol. Phys. 1987. Vol. 13. № 2. P. 243–249.

180. Hahn E.W., Alfieri A.A., Kim J.H. The significiance of local tumor hyperthermia/radiation on the production of disseminated disease // Int. J. Radiat. Oncol. Biol. Phys. 1979. Vol. 5. P. 819–823.

181. Hill S.A., Denekamp J. Does local tumor heating in mice influence metastatic spread? // Brit. J. Radiol. 1982. Vol. 55. P. 444–451.

182. Ando E., Urano M., Kenton M., Kahn T. Effect of thermotherapy on the development of spontaneus lung metastases // Int. J. Hyperthermia. 1987. Vol. 3. № 5. P. 453–458.

183. Bataille N., Valancien G., Chopin D. Antitumoral local effect and metastatic risk of focused extracorporeal pyrotherapy on Dunning R-3327 tumors // Eur. Urol. 1996. Vol. 29. P. 72–77.

184. Dewhirst M.W., Sim D.A., Forsyth K.S. et al. Local control and distant metastases in primary canine malignant melanomas treated with hyperthermia and/or radiotherapy // Int. J. Hyperthermia. 1985. Vol. 1. P. 219–234.

185. McChesney-Gillette S., Dewhirst M.W., Gillette E.L. et al. Response of canine soft tissue sarcomas to radiation or radiation plus hyperthermia: A randomized phase II study // Int. J. Hyperthermia. 1992. Vol. 8. P. 309–320.

186. Rethfeldt E., Becker M., Koldovsky P. Whole-body hyperthermia in the treatment of breast cancer // Meet. Abstr. 23rd Congress Int. Assoc. Breast Cancer Res. 2001. Vol. 3. Suppl. 1. A38.

187. Overgaard J., Gonzalez D., Hulshof M. C. et al. Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology // Int. J. Hyperthermia. 2009. Vol. 25. № 5. P. 323–334.

188. Issels R. D., Lindner L. H., Verweij J. et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study // Lancet Oncol. 2010. Vol. 11. № 6. P. 561–570. www.thelancet.com/oncology. doi:10.1016/S1470-2045(10)70071-1.

189. Olofsson R., Mattsson J., Hafström L. Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities – Long-term follow-up of a randomised trial // Int. J. Hyperthermia. 2014. Vol. 30. № 5. P. 295–298. doi: 10.3109/02656736.2014.931601.

190. Kang M., Liu W.Q., Qin Y.T. et al. Long-term efficacy of microwave hyperthermia combined with chemoradiotherapy in treatment of nasopharyngeal carcinoma with cervical lymph node metastasis // Asian Pac. J. Cancer Prev. 2013. Vol. 14. P. 7395–7400.

191. Mitsumori M., Zhi-Fan Z., Oliynychenko P. et al. Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multiinstitutional prospective randomized trial of the International Atomic Energy Agency // Int. J. Clin. Oncol. 2007. Vol. 12. № 3. P. 192–198.

192. Chekhun V.F. Sherban S.D. Quo vadis, metastasis? // Onkologia (‘Oncology’) (Kiev). 2014. Vol. 16. № 2. P. 84–90. (In Russian)

193. Valastyan S., Weinberg R.A. Metastasis: molecular insights and evolving paradigms // Cell. 2011. Vol. 147. № 2. P. 275–292.

194. Sakurai H. Tumor targeting with hyperthermia // Jpn. J. Hyperthermic Oncol. 2006. Vol. 22. № 2. P. 61–69.

195. Issels R., Kampmann E., Kanaar R., Lindner L.H. Hallmarks of hyperthermia in driving the future of clinical hyperthermia as targeted therapy: translation into clinical application // Int. J. Hyperthermia. 2016. Vol. 32. № 1. P. 89–95. doi:10.3109/02656736.2015.1119317

Login or Create
* Forgot password?