DIAGNOSTICS OF HF RADIO CHANNEL: BASED ON DATA FROM BACKSCATTER IONOSPHERIC SOUNDING BY CONTINUOUS CHIRP SIGNAL
Abstract and keywords
Abstract (English):
Backscatter ionospheric sounding (BIS) is a powerful tool for monitoring and predicting conditions of operation of HF communication systems. The BIS method is adopted to determine coverage areas of radio waves and maximum usable radio frequencies, distance along the ground to a scatterer, as well as to gain information about ionospheric structure and conditions. To solve these problems, we propose a method for direct diagnostics of HF radio channel at the front edge of BIS signals on ionograms. The method relies on real-time automatic processing and interpretation of BIS ionograms. We present algorithms for determining the maximum usable frequencies and characteristics of oblique sounding signals from current BIS data, without correcting ionospheric parameters. We realize the algorithm for recovering ionospheric parameters at the path midpoint.

Keywords:
ionosphere, ionogram, radio wave propagation, backscatter ionosphere sounding
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Возвратно-наклонное зондирование (ВНЗ) прочно вошло в практику исследования ионосферы наряду с вертикальным (ВЗ) и наклонным (НЗ) зондированием начиная с 40-х гг. XX в., и имеется опыт по применению его для прогнозирования условий работы на линиях радиосвязи [Benner, 1949; Кабанов, Осетров, 1965; Чернов, 1971]. При ВНЗ сигнал подвергается влиянию тех же факторов, которые действуют на сигналы магистральных радиолиний. Поэтому естественно ожидать, что по параметрам сигнала ВНЗ и их изменениям можно предсказать условия распространения на линиях связи. Кроме того, сигнал ВНЗ несет в себе информацию о состоянии ионосферы на удалении несколько тысяч километров от места наблюдения в любом заданном направлении. Это существенно дополняет возможности, предоставляемые ионосферными станциями ВЗ в изучении ионосферы и прогнозировании ее параметров. Существует несколько основных подходов к определению характеристик радиосвязи по данным ВНЗ. Наиболее широко распространенный подход связан с решением так называемых обратных задач, когда из данных ВНЗ ионосферы определяются ее количественные параметры. Как правило, в качестве измеряемых характеристик используются задержки зондирующего сигнала, соответствующие переднему фронту сигнала ВНЗ [Benito et al., 2008; Fridman et al., 2012; Norman et al., 2013; Zhu et al., 2015; Feng et al., 2016]. Использование таких методов обычно требует больших временных затрат на ЭВМ, что значительно снижает возможности использования средств ВНЗ для контроля условий работы на коротковолновых трассах.

Одним из возможных путей оперативного прогнозирования характеристик радиосвязи является метод прямой диагностики радиоканала, позволя-ющий по зондирующему сигналу определять ха-рактеристики радиоканала, минуя коррекцию па-раметров ионосферы [Куркин и др., 1993]. Данный подход применяется в случаях, когда диагностиче-ская трасса НЗ совпадает с интересующей радио-трассой или лежит в секторе возвратно-наклонного зондирования. В настоящей работе излагается метод оперативной диагностики КВ-радиоканала по результатам автоматической обработки и интерпретации ионограмм возвратно-наклонного зонди-рования, полученных с помощью ЛЧМ-ионозонда, разработанного в ИСЗФ СО РАН [Brynko et al., 1988; Подлесный и др., 2013]. Результаты интерпретации сигналов ВНЗ и построения треков явля-ются исходными данными для определения максимальных применимых частот (МПЧ) и дистанционно-частотных характеристик (ДЧХ) наклонного зондирования ионосферы на заданные дальности. В дальнейшем результаты оперативной диагностики КВ-радиоканала по текущим данным ВНЗ используются для восстановления параметров ионосферы в секторе зондирования.

 

References

1. Benito E., Bourdillon A., Saillant S., Rannou V., Molinié J.P. Inversion of HF backscatter ionograms using elevation scans. J. Atmos. Terr. Phys. 2008, vol. 70, no. 15, pp. 1935–1948. DOI: 10.1016/j.jastp.2008.09.031.

2. Benner A.H. Predicting maximum usable fre-quency from long-distance scatter. Proceedings of IRE. 1949, vol. 37, no. 1, pp. 44–47.

3. Bilitza D., Reinisch B.W. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res. 2008, vol. 42, pp. 599–609. DOI: 10.1016/j.asr.2007.07.048.

4. Brynko I.G., Galkin I.A., Grosov V.P., Dvinskikh N.I., Matyushonok S.M., Nosov V.E. An automatically controlled data gathering and processing system using an FMCW ionosonde. Adv. Space Res. 1988, vol. 8, no. 4, pp. 121–124.

5. Chernov Yu.A. Vozvratno-naklonnoe zondirovanie ionosfery [Backscatter Sounding Ionosphere]. Moscow, Sov. svyaz’ Publ., 1971, 204 p. (In Russian).

6. Dyson P.L. A simple method of backscatter ionogram analysis. J. Atmos. Terr. Phys. 1991, vol. 53, no. 1, pp. 75–88.

7. Fridman S.V., Nickisch L.J., Hausman M. Inversion of backscatter ionograms and TEC data for over-the-horizon radar. Radio Sci. 2012, vol. 47, RS0L10. DOI: 10.1029/2011RS004932.

8. Grozov V.P., Ilyin N.V., Kotovich G.V., Ponomarchuk S.N. Software system for automatic interpretation of ionosphere sounding data. Pattern Recognition and Image Analysis. 2012, vol. 22, no. 3, pp. 458–463. DOI: 10.1134/S1054661812030042.

9. Grozov V.P., Kiselev A.M., Kotovich G.V., Mikhailov S.Ya., Ponomarchuk S.N. The software for processing and interpretation of sounding ionogram on base of digital chirp sounder. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, vol. 4, pp. 75–85. (In Russian).

10. Ilyin N.V., Khakhinov V.V., Kurkin V.I., Nosov V.V., Orlov I.I., Ponomarchuk S.N. The theory of chirp-signal ionospheric sounding. Proceedings of ISAP’96. Chiba, Japan, 1996, pp. 689–692.

11. Ivanova V.A., Kurkin V.I., Polekh N.M., Chistyakova L.V., Brynko I.G., Chuyev V.V., Dumbrava Z.F., Poddelskii I.N. Studying large-scale traveling ionospheric disturbances according to the data of oblique-incidence sounding. Geomagnetism and Aeronomy. 2011, vol. 51, no. 8, pp. 1101–1104.

12. Feng J., Ni B.-B., Zhao Z.-Y., Liu W., Wei N., Lou P. A method of reconstructing horizontally-inhomogeneous ionospheric structure using HF sky-wave backscatter ionograms. Chinese J. Geophys. 2016, vol. 59, no. 5, pp. 457–473.

13. Kabanov N.I., Osetrov B.I. Vozvratno-naklonnoe zondirovanie ionosfery [Backscatter Sounding Ionosphere]. Moscow, Svyaz’ Publ., 1965, 112 p.

14. Kotovich G.V., Kim A.G., Mikhailov S.Ya., Grozov V.P., Mikhailov Ya.S. Determining the foF2 critical frequency at the path midpoint from oblique sounding data based on the Smith method. Geomagnetism and Aeronomy. 2006, vol. 46, no. 4, pp. 517–521. DOI: 10.1134/S0016793206040141.

15. Krasheninnikov I.V., Liannoy B.E. Estimation of the true ionospheric height profile, with a continuous gradient, from oblique sounding data. J. Atmos. Terr. Phys. 1990, vol. 52, no. 2, pp. 113–117.

16. Kurkin V.I., Laryunin O.A., Podlesny A.V., Pezhemskaya M.D., Chistyakova L.V. Studying morphological characteristics of traveling ionospheric disturbances with the use of near-vertical ionospheric sounding data. Atmospheric and Oceanic Optics. 2014, vol. 27, iss. 4. pp. 303–309. DOI: 10.1134/ S1024856014040095.

17. Kurkin V.I., Nosov V.E., Ponomarchuk S.N., Savkov S.S., Chistyakova L.V. Method for operative diagnostics of HF radio channel. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. Novosibirsk, Nauka Publ., 1993, vol. 100, pp. 168–188. (In Russian).

18. Li N., Zhao Z., Zhou C., Chen G., Yang G., Huang S., Li T. Inversion of sweep frequency backscatter ionogram from monostatic HF sky-wave radar. IEEE Geoscience and Remote Sensing Letters. 2013, vol. 10, no. 6, pp. 1360–1364. DOI: 10.1109/LGRS.2013.2241728.

19. Mikhailov S.Ya. Ambiguity of the reconstruction of plasma frequency profiles from a given height-frequency characteristic and their discernibility for oblique propagation of HF radio waves in an isotropic ionosphere. Radiophysics and Quantum Electronics. 2000, vol. 43, no. 10, pp. 766–782.

20. Norman R.J., Dyson P.L. HF radar backscatter inversion technique. Radio Sci. 2006, vol. 41, RS4010. DOI: 10.1029/ 2005S003355.

21. Oinats A.V., Nishitani N., Ponomarenko P., Ratovsky K.G. Diurnal and seasonal behavior of the Hokkaido East SuperDARN ground backscatter: simulation and observation. Earth, Planets and Space. 2016, vol. 68, no. 1, pp. 18. DOI: 10.1186/ s40623-015-0378-9.

22. Podlesnyi A.V., Brynko I.G., Kurkin V.I., Berezovsky V.A., Kiselev A.M., Petukhov E.V. Multifunctional chirp ionosonde for monitoring the ionosphere. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, no. 4, pp. 24–31. (In Russian).

23. Ponomarchuk S.N, Kurkin V.I., Oinats A.V. The Diagnostics of ionosphere and Earth ground surface by backscatter sounding data. PIERS 2009: Proceedings. Moscow, 2009, vol. I, II, pp. 1307–1310.

24. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Penzin M.S. The real-time forecast of HF radio channel on the base of ionoshere sounding data. PIERS 2012: Proceedings. Moscow, 2012, pp. 1182–1186.

25. Ponomarchuk S.N., Grozov V.P., Kim A.G., Kotovich G.V., Podlesniy A.V. The near real-time diagnostics of ionosphere parameters at the middle point of the radio path on the base of oblique sounding data. Proceedings of SPIE. 2015, vol. 9680, 96805E. DOI: 10.1117/12.2203589.

26. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Kurkin V.I., Penzin M.S. Automatic processing and interpretation of backscatter ionosphere sounding ionograms. Proceedings of SPIE. 2016, vol. 10035, 100351E. DOI: 10.1117/12.2248765.

27. Ponomarchuk S.N., Ilyin N.V., Penzin M.S. The model of radio wave propagation in 1–10 MHz frequency range on the base of normal wave technique. Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2014, iss. 25, pp. 33–39. (In Russian).

28. Smith M.S. The calculation of ionospheric profiles from data given on oblique incidence ionograms. J. Atmos. Terr. Phys. 1970, vol. 32, no. 6, pp. 1047–1056.

29. Zhu P., Zhou C., Zhang Yu., Yang G., Jiang C., Sun H., Cui X. F region electron density profile inversion from backscatter ionogram based on international reference ionosphere. J. Atmos. Solar-Terr. Phys. 2015, vol. 129, pp. 111–118. DOI: 10.1016/j.jastp.2015.05.003

Login or Create
* Forgot password?