FORMATION OF SURFACES UNDER KINETIC DISPLAYING
Abstract and keywords
Abstract (English):
This work is the development of previously published ones in the journal "Geometry and Graphics" as follows: "Kinematic Correspondence of Rotating Spaces" (№ 1, 2013) and "Formation of Cyclic Surfaces in Kinetic Geometry" (№ 4, 2017). Many of mechanisms make rotational movement, wherein rotating parts of one mechanism "invade" into the zone of rotation for another rotating mechanism’s parts. At the same time, in addition to rotation, they can make other movements, both translational and rotational nature. The theory of kinetic geometry, of which this work is an integral part, is developed in order to avoid collisions of two or more parts of different mechanisms with each other. This is a rather complicated problem in mechanical engineering, in the mining industry, in metallurgy, and in space navigation, where there are no objects that are at rest. Therefore, the kinetic theory of matching for rotating spaces R1 3 and R23 when they are independent from each other movement is quite relevant. In this work have been considered cases for mapping of geometric figures of one space to another one when these figures are moving inside their space R13 . A theory which is presented has been called kinetic geometry, as it relates to engineering problems associated with gearings. These problems were addressed for the first time and drew-up as inventions. A monograph entitled "Introduction to Kinetic Geometry" is currently being prepared for publication.

Keywords:
kinetic geometry, geometry, motion, display, descriptive geometry.
Text

В движущихся механизмах при их работе зачастую встречаются случаи, когда одни части как бы вторгаются в зону движения других частей.

References

1. Aleksandrovich V.P. Inzhenernyy sposob konstruirovaniya tsiklicheskikh poverkhnostey i ego prilozheniya. Kand. Diss. [Engineering way of constructing cyclic surfaces and its applications. Cand. Diss.]. Moscow, 1979. 19 p. (in Russian)

2. Amirov M. Ob odnom chastnom grafoanaliticheskom zadanii tsiklicheskikh poverkhnostey [On a particular graph-analytic set of cyclic surfaces]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1971, I. 13, pp. 53–57. (in Russian)

3. Argunov B.I. Elementarnaya geometriya [Elementary geometry]. Moscow, Prosveshchenie Publ., 1966. 240 p. (in Russian)

4. Bliok A.V. Konstruirovanie poverkhnosti kanalovogo tipa po zadannym nachal'nym usloviyam [Designing a channel-type surface with given initial conditions]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1982, I. 33, pp. 56–60. (in Russian)

5. Van der Varden. Algebra [Algebra]. Moscow, Nauka Publ., 1979. 623 p. (in Russian)

6. Vasilevskiy O.V. Konstruirovanie kanalovykh poverkhnostey po napered zadannym usloviyam [Designing channel surfaces according to predefined conditions]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1978. I. 27. (in Russian)

7. Vygodskiy M.Ya. Analiticheskaya geometriya [Analytical geometry]. Moscow, Fizmatgiz Publ., 1963. 523 p. (in Russian)

8. Gil'bert D. Naglyadnaya geometriya [Visual geometry]. Ob"edinennoe nauchno-tekhnicheskoe izdatel'stvo NKTP SSSR Publ., 1936. 302 p. (in Russian)

9. Gryaznov Ya.A. Otsek kanalovoy poverkhnosti kak obraz tsilindra v rassloyaemom obrazovanii [A compartment of the channel surface as an image of a cylinder in a stratified formation]. Geometriya i grafika [Geometry and graphics]. 2012, V. 1, I. 1, pp. 17–19. (in Russian)

10. Delone B.N., Raykov D.A. Analiticheskaya geometriya [Analytic geometry]. Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury Publ., 1948. 456 p., V. 1. (in Russian)

11. Delone B.N., Raykov D.A. Analiticheskaya geometriya [Analytic geometry]. Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury Publ., 1949. 516 p., V. 2. (in Russian)

12. Dzhaparidze I.S. Geometricheskie preobrazovaniya prostranstva i ikh primenenie v nachertatel'noy geometrii [Geometric transformations of space and their application in descriptive geometry]. Metody nachertatel'noy geometrii i ee prilozheniya [Methods of Descriptive Geometry and its Applications]. Moscow, GITTL Publ. 1955, pp. 54 — 82. (in Russian)

13. Zelev V.P. Issledovanie mashinnykh metodov proektirovaniya i rascheta kanalovykh poverkhnostey slozhnykh tekhnicheskikh form. Kand. Diss. [Investigation of machine methods for designing and calculating channel surfaces of complex technical forms. Cand. Diss.]. Moscow, 1978. 18 p. (in Russian)

14. Ivanov G.S. Konstruirovanie tekhnicheskikh poverkhnostey (matematicheskoe modelirovanie na osnove nelineynykh preobrazovaniy) [Designing technical surfaces (mathematical modeling based on nonlinear transformations)]. Moscow, Mashinostroenie Publ., 1987. 192 p. (in Russian)

15. Kokareva Ya.A. Konstruirovanie kanalovykh poverkhnostey s peremennoy obrazuyushchey i ploskost'yu parallelizma na osnove ekviaffinnykh preobrazovaniy ploskosti [Designing of channel surfaces with a variable generator and a plane of parallelism on the basis of equiaffine plane transformations]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 1, pp. 12–20. (in Russian)

16. Korotkiy V.A. Komp'yuternoe modelirovanie kinematicheskikh poverkhnostey [Computer simulation of kinematic surfaces]. Geometriya i grafika [Geometry and graphics]. 2013, V. 4, I. 4, pp. 19–26. (in Russian)

17. Kotov I.I. Analiticheskaya geometriya s teoriey izobrazheniy [Analytic geometry with image theory]. Moscow, Vysshaya shkola Publ., 1969. 304 p. (in Russian)

18. Kotov I.I. Prikladnaya geometriya poverkhnostey [Applied Geometry of Surfaces]. Sb. nauchnykh statey KhADI [Sat. scientific articles of HADI]. Khar'kov, 1963, I. 3, pp. 3–10. (in Russian)

19. Lyukshin V.S. Teoriya vintovykh poverkhnostey v proektirovanii rezhushchikh instrumentov [Theory of screw surfaces in the design of cutting tools]. Moscow, Mashinostroenie Publ., 1967. 372 p. (in Russian)

20. Miroshnichenko A.V. Usloviya realizatsii nekotorykh sposobov konstruirovaniya tsiklicheskikh poverkhnostey [Conditions for the realization of certain methods for constructing cyclic surfaces]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1980, I. 29, pp. 66–67. (in Russian)

21. Muskhelishvili N.I. Kurs analiticheskoy geometrii [Course of analytical geometry]. OGIZ Gostekhizdat Publ., 1947. 644 p. (in Russian)

22. Narzullaev S.A. Mnozhestvo okruzhnostey, vydelenie iz nego tsiklicheskikh poverkhnostey [Set of circles, separation of cyclic surfaces from it]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, KNUBA Publ. 1999, pp. 123–125. (in Russian)

23. Obukhova V.S. Tsiklicheskaya poverkhnost' kak model' semeystva secheniy rabochey poverkhnosti pochvoobrabatyvayushchey frezy [Cyclic surface as a model of a family of cross sections of the working surface of a tiller]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1989, I. 48, pp. 14–17. (in Russian)

24. Podgornyy A.L. Mnozhestva okruzhnostey, assotsiirovannye s kongruentsiyami pryamykh i vydelenie iz nikh tsiklicheskikh poverkhnostey [Sets of circles associated with congruences of lines and the separation of cyclic surfaces from them]. Voprosy estestvennykh nauk [Questions of natural sciences]. Tashkent, 1969. (in Russian)

25. Rotkov S.I. Sredstva geometricheskogo modelirovaniya i komp'yuternoy grafiki prostranstvennykh ob"ektov dlya CALS-tekhnologiy. Dokt. Diss. [Means of geometric modeling and computer graphics of spatial objects for CALS-technologies. Doct. Diss.]. N. Novgorod, 1999. 39 p. (in Russian)

26. Ruzleva N.P. Kinematika obrazovaniya tsiklicheskoy poverkhnosti [Kinematics of the formation of a cyclic surface]. Trudy UDN im. P. Lumumby [Proceedings of the UDN. P. Lumumba]. Moscow, 1967, V. XXVI: Matematika Publ., Prikladnaya geometriya Publ., pp. 100–104. (in Russian)

27. Ryzhov N.N. Algoritmy perekhoda ot konstruktivno-kinematicheskogo zadaniya poverkhnosti k analiticheskomu [Algorithms of the transition from the constructive-kinematic definition of the surface to the analytical one]. Trudy UDN im. P. Lumumby [Proceedings of the UDN. P. Lumumba]. Moscow, 1971, V. 53, I. 4, pp. 17–25. (in Russian)

28. Ryzhov N.N. Karkasnaya teoriya zadaniya i konstruirovaniya poverkhnostey [Framework theory of the task and design of surfaces]. Trudy UDN im. P. Lumumby [Proceedings of the UDN. P. Lumumba]. Moscow, 1967, V. XXVI: Matematika, I. 3, Prikladnaya geometriya Publ., pp. 3–17. (in Russian)

29. Sal'kov N.A. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric modeling and descriptive geometry]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 31–61. (in Russian)

30. Sal'kov N.A. Geometricheskie parametry grokhota [Geometric parameters of the screen]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1987, I. 43, pp. 69–71. (in Russian)

31. Sal'kov N.A. Kinematicheskoe sootvetstvie vrashchayushchikhsya prostranstv [Kinematic correspondence of rotating spaces]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 4–11. (in Russian)

32. Sal'kov N.A. Nachertatel'naya geometriya — teoriya izobrazheniy [Descriptive Geometry — Image Theory]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 41–47. (in Russian)

33. Sal'kov N.A. O kinematicheskom sootvetstvii tochek dvukh ploskostey [On the kinematic correspondence of the points of two planes]. Gorod i ekologicheskaya rekonstruktsiya zhilishchno-kommunal'nogo kompleksa XXI veka. Chetvertaya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya 5–6 aprelya 2006 g. [City and ecological reconstruction of the housing and communal complex of the XXI century. Fourth International Scientific and Practical Conference April 5-6, 2006]. Moscow, MIKKhiS Publ., 2006, pp. 257–262. (in Russian)

34. Sal'kov N.A. Otobrazhenie R1 3 na R2 3 pri peresekayushchikhsya osyakh vrashcheniya [Mapping of R1 3 to R2 3 with intersecting rotation axes]. Sbornik trudov Vserossiyskoy nauchno-metodicheskoy konferentsii po inzhenernoy geometrii i komp'yuternoy grafike [Collected Works of the All-Russian Scientific and Methodical Conference on Engineering Geometry and Computer Graphics]. Moscow, MITKhT Publ., 2008, pp. 4–7. (in Russian)

35. Sal'kov N.A. Proektsionno-kinematicheskoe sootvetstvie dvukh parallel'nykh ploskostey [Projection-kinematic correspondence of two parallel planes]. Moscow, Dep. v VINITI 08.09.81 Publ., I. 4372-81. (in Russian)

36. Sal'kov N.A. Formirovanie tsiklicheskikh poverkhnostey v kineticheskoy geometrii [Formation of cyclic surfaces in kinetic geometry]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 24–36. (in Russian)

37. Sal'kov N.A. Tsiklida Dyupena i ee prilozhenie [Cyclid Dupin and its application]. Moscow, INFRA-M Publ., 2016. 141 p. (in Russian)

38. Skidan I.A. Geometricheskoe modelirovanie kinematicheskikh poverkhnostey v spetsial'nykh koordinatakh. Dokt. Diss [Geometric modeling of kinematic surfaces in special coordinates. Doct. Diss]. Inzhenernaya geometriya i komp'yuternaya grafika [Engineering geometry and computer graphics]. Donetsk, 1989. 340 p. (in Russian)

39. Skidan I.A. Kvazivintovye, tsiklicheskie i kanalovye G-poverkhnosti [Quasi-screw, cyclic and channel G-surfaces]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1980, I. 30, pp. 31–34. (in Russian)

40. Fazylov K.R. Metody konstruirovaniya tsiklicheskikh poverkhnostey sopryazheniya i ikh primenenie v reshenii tekhnicheskikh zadach. Kand. Diss. [Methods for constructing cyclic conjugation surfaces and their application in solving technical problems. Cand. Diss.]. Moscow, 1996. 20 p. (in Russian)

41. Yakhnenko V.M. O tsiklicheskoy poverkhnosti s tremya semeystvami krugovykh obrazuyushchikh [On a cyclic surface with three families of circular generators]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel'nik Publ., 1987, I. 43, pp. 43–45. (in Russian)

Login or Create
* Forgot password?