Irkutsk, Russian Federation
Irkutsk, Russian Federation
We propose an index of efficiency of the solar activity effect on the tropospheric temperature, which takes into account the spatial irregularity of the response to this effect. As a proxy of solar activity we take the PC index of geomagnetic activity, designed to monitor the geomagnetic field at high latitudes. Using NCEP/NCAR reanalysis data, we carry out a comparative analysis of variations in the proposed index and lower-troposphere temperature variations during geomagnetic disturbances. We identify the presence of a high degree of correlation between the temperature in the 925–700 hPa layer and the proposed index of solar activity effect. The spatio-temporal analysis of the index and temperature variations shows that the index of effi-ciency of the solar activity effect describes well both the value and the sign of the observed variations in the spa-tial distribution of the lower-troposphere temperature as compared to the frequently used index of geomagnetic activity.
solar activity, geomagnetic disturbance, geomagnetic activity index, temperature, humidity, solar-terrestrial relationships
ВВЕДЕНИЕ
Современные изменения температуры у поверхности Земли [Груза и др., 2015] обусловлены как внутренними причинами изменчивости климатической системы, так и внешними по отношению к системе процессами. Внешние факторы, способные влиять на состояние составляющих климатической системы, могут быть естественными, т. е. связанными, в первую очередь, с влиянием солнечной и вулканической активности, либо являться результатом антропогенного воздействия. Определение роли естественных и антропогенных факторов в изменениях климата поможет дальнейшему развитию прогностических моделей климата.
Вопрос о влиянии Солнца — основного источника энергии на планете — на процессы в нижней атмосфере интересует исследователей уже более столетия. Утверждение, что природные процессы на Земле контролируются солнечной активностью, появилось еще в начале прошлого века. По мере развития представлений о влиянии солнечной активности на различные явления метеорологического и биологического характера [Гульельми, Рубан, 2016] особый интерес приобретает вопрос о физических механизмах реализации солнечно-земных связей. Установлено, что прямое энергетическое воздействие потока солнечного излучения на приповерхностную температуру существенно меньше влияния углекислого газа [Мохов и др., 2012]. Поэтому идут поиски триггерных или параметрических механизмов, при которых небольшие воздействия могут приводить к существенным изменениям природной системы. К таким механизмам можно отнести воздействие на радиационный баланс в тропосфере, обусловленное изменениями глобальной электрической цепи вследствие вариаций солнечного ветра и межпланетного магнитного поля [Жеребцов и др., 2005; Tinsley, 2000; Kniveton et al., 2008]. В ряде работ проводится анализ воздействия галактических космических лучей на аэрозольный и малый газовый состав атмосферы и, как следствие, на процессы в нижней атмосфере [Пудовкин, Распопов, 1992, Svensmark, Friis-Christensen, 1997, Mironova et al., 2015].
Нелинейное воздействие солнечной активности на нижние слои атмосферы может реализовываться в системе общей циркуляции атмосферы. Данные, полученные в работах [Veretenenko, Ogurtsov, 2012, Karakhanyan, Molodykh, 2017], подтверждают, что существует значительная пространственно-временная неоднородность тропосферного отклика на солнечное воздействие, которая может быть связана с циркуляционными процессами в атмосфере. Установлено, что наибольший отклик в тропосфере наблюдается на средних и высоких широтах. Поэтому в качестве параметра, учитывающего данную закономерность, могут рассматриваться индексы, описывающие геомагнитную активность в авроральной зоне — области максимального проявления солнечного влияния. Следует отметить, что в пространственном распределении характеристики геомагнитной активности, обусловленные солнечной активностью, отражают только широтную зависимость, а отклик метеопараметров на солнечное воздействие имеет существенную долготную неоднородность. В связи с этим в настоящей работе предлагается показатель эффективности воздействия, который описывает влияние солнечной активности с учетом состояния тропосферы перед возмущением и во время геомагнитного возмущения.
___________________________________________________________________________________
Работа выполнена в рамках базового финансирования программы ФНИ II.16..
1. Gruza G.V., Rankova E.Ya., Rocheva E.V., Smirnov V.D. Geographic and seasonal features of the present global warming. Fundamentalnaya i prikladnaya klimatologiya [Fundamental and Applied Climatology]. 2015, vol. 2, pp. 41–62. (In Russian).
2. Guglielmi A.V., Ruban V.F. To the 120th anniversary of A.L. Chizhevsky’s birth. Solar-Terr. Phys. 2016, vol. 2, no. 4, pp. 126–133. DOI: 10.12737/24279.
3. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 1996, vol. 77, no. 3, pp. 437–470. DOI: 10.1175/ 1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
4. Karakhanyan A.A., Molodykh S.I. Evolution of extratropical cyclones during disturbed geomagnetic conditions. Geomagnetism and Aeronomy. 2017, vol. 57, no. 5, pp. 535–540. DOI: 10.1134/S0016793217050115.
5. Kniveton D.R., Tinsley B.A., Burns G.B., Bering E.A., Troshichev O.A. Variations in global cloud cover and the fair-weather vertical electric field. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 13, pp. 1633–1642. DOI: 10.1016/j.jastp.2008.07.001.
6. Mironova I.A., Aplin K.L., Arnold F., Bazilevskaya G.A., Harrison R. G., Krivolutsky A.A., Nicoll K.A., Rozanov E.V., Turunen E., Usoskin I.G. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, vol. 194, no. 1–4, pp. 1–96. DOI: 10.1007/s11214-015-0185-4.
7. Mokhov I.I., Smirnov D.A., Karpenko A.A. Assessments of the relationship of changes of the global surface air temperature with different natural and anthropogenic factors based on observations // Doklady Earth Sciences. 2012, vol. 443, no. 1, pp. 381–387. DOI: 10.1134/S1028334X12030178.
8. Pudovkin M.I., Raspopov O.M. Mechanism of the solar activity effect on the low atmosphere state and meteoparameters (Overview). Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1992, vol. 32, no. 5, pp. 1–22. (In Russian).
9. Svensmark H., Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage — a missing link in solar-climate relationships. J. Atmos. Solar-Terr. Phys. 1997, vol. 59, no. 11, pp. 1225–1232. DOI: 10.1016/S1364-6826(97)00001-1.
10. Tinsley B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 2000, vol. 94, no. 1–2, pp. 231–258.
11. Troshichev O.A., Andrezen V.G., Vennerstrom S., Friis-Christensen E. Magnetic activity in the polar cap — A new index. Planet. Space Sci. 1988, vol. 36, no. 11, pp. 1095–1102. DOI: 10.1016/0032-0633(88)90063-3.
12. Troshichev O.A., Janzhura A. Relationship between the PC and AL indices during repetitive bay-like magnetic disturbances in the auroral zone. J. Atmos. Solar-Terr. Phys. 2009, vol. 71, no. 12, pp. 1340–1352. DOI: 10.1016/j.jastp.2009.05.017.
13. Veretenenko S.V., Ogurtsov M.G. Study of spatial and temporal structure of long-term effects of solar activity and cosmic ray variations on the lower atmosphere circulation. Geomagnetism and Aeronomy. 2012, vol. 52, no. 5, pp. 591–602. DOI: 10.1134/S0016793212050143.
14. Zabolotnaya N.A. Indeksy geomagnitnoi aktivnosti. Spravochnoe posobie [Geomagnetic Activity Indices]. Handbook. 2-nd Edition. Moscow, LKI Publ., 2007, 88 p. (In Russian).
15. Zherebtsov G.A., Kovalenko V.A., Molodykh S.I., Rubtsova O.A. The model of solar activity effect on climatic characteristics of the Earth’s troposphere. Optika atmosfery I okeana [Atmospheric and Oceanic Optics]. 2005, vol. 18, no. 12, pp. 1042–1050. (In Russian).
16. URL: http://www.geophys.aari.ru/pc_about.html (accessed May 11, 2018).
17. URL: https://www.esrl.noaa.gov/psd (accessed May 11, 2018).