The paper presents the results of study of the antibacterial effect of silver nanoparticles when ingested, on the experimental model of peritonitis and meningoencephalitis in vivo. In conditions of the increasing resistance of bacteria to antibacterial drags, the search of alternative means which will allow to effectively deal with clinically significant microorganisms, is relevant. Such tools are the nanoparticles of metals, particularly the silver nanoparticles. According to results of conducted research, they show quite a high antibacterial and antiviolence activity. The study prove that at intra-cerebral introduction of pathogenic strains of microorganisms (experimental meningoencephalitis), after per oral use of nanosilver - effect didn´t observed; in the group of animals with intra-peritoneal injection (experimental peritonitis) - the signs of inflammation of the peritoneum by microscopic examination didn´t revealed.
silver nanoparticles, biofilms, antibacterial effect, antibiotics, peritonitis, meningoencephalitis, bioaccumulation
В последние годы наночастицы серебра (AgNPs) успешно используются в медицине для доставки терапевтических агентов [3]. Они считаются менее токсичными, чем ионы серебра. Исследования показали, что AgNPs влияет на бактериальную проницаемость мембран и прикрепление бактерий к поверхности клеточной мембраны. Обнаружение в больших количествах наночастиц внутри бактерий предполагает, что это важнейший антибактериальный механизм. Кроме того, AgNPs взаимодействует с бактериальными мембранными белками, внутриклеточными белками, фосфатными остатками в ДНК, и вмешивается в деление клеток, что приводит к гибели бактериальной клетки [4, 5]. В фокусе научного анализа оказались биопленки, как особая и, тем не менее, абсолютно превалирующая форма существования микроорганизмов при инфекционных заболеваниях человека. Формируется новая ветвь профилактической и терапевтической медицины, нуждающаяся в разработке фармацевтических и нефармацевтических методов предупреждения образования биопленок или разрушения образовавшихся [1,2].
1. Golub AV. Bakterial´nye bioplenki - novaya tsel´ terapii? Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2012;14(l):23-9. Russian.
2. Khrenov PA, Chestnova TV. Obzor metodov bor´by s mikrobnymi bioplenkami pri vospalitel´nykh zabolevaniyakh [The microbial biofilms at the inflammatory diseases: general information and methods of straggle against them]. Vestnik novykh meditsinskikh tekhnologiy (Elektronnyy zhurnal) [Internet]. 2013 [cited 2013 Feb 1];1:[about 4 p.]. Russian. Available from: http://www.medtsu.tula.ru/VNMT/Bulletin/E2013-1/4102.pdf
3. XiaoY, Wu Z, Wong KY, Liu ZHarpin DNA probes based on target-induced in situ generation of luminescent silver nanoclusters // Chem Commun (Camb). http://www.ncbi.nlm.nih.gov/pubmed/24686790
4. Santoro CM, Duchsherer NL, Grainger DWAntimicrobial efficacy and ocular cell toxicity from silver nanoparticles. Nanobio techno logy. 2007;3(2):55-65.
5. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1): 177-182.
6. Markowska K, Gradniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. ActaBiochimPol. 2013;60(4):523-30.
7. Besinis A, DePeralta T, Handy RD. Inhibition of biofilmformation and antibacterial propertie sofasilvernano-coatingonhumandentine. Nanotoxicology. 2014;8(7):745-54.
8. Kris NJ Stevens, Sander Croes, Rinske S. Boersma et al. Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials. 2011;32:1264-9.
9. Markowska K, Gradniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms.
10. Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam SI, Alzoubi KH. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology. 2014. URL: http://www.ncbi.nlm.nih.gov/pubmed/24643389.
11. Markowska К, Gradniak AM, Krawczyk K, Wrabel I, Wolska KI. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeraginosa by silver nanoparticles. J Med Microbiol. 2014. doi: 10.1099/ http://www.ncbi.nlm.nih.gov/pubmed/24623636.
12. Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale. 2014;6(5): http://www.ncbi.nlm.nih.gov/pubmed/24468900.
13. Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeraginosa. J Nanobiotechnol-ogy. 2014;12:2.
14. Monteiro DR, Negri M, Silva S, Gorap LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. ColloidsSurf В Biointerfaces. 2014;114:410-2.
15. Li-Ping Tseng, Chin-Yin Juan, Shiun-Long Lin, Michael R Doran, Jiang-Jen Lin, Shan-hui Hsu, Jiunn-Wang Liao, Ching-I Shen&Hong-Lin SuNanohybrids of silver particles on clay platelets delaminate Pseudomonas biofilms. Nanomedicine;0(0): 1-14.
16. Mara Di Giulio, Soraya Di Bartolomeo, Emanuela Di Campli, Silvia Sancilio, EleonoraMarsich, Andrea Travan, Amelia Cataldi and Luigina Cellini.The Effect of a Silver Nanoparticle Polysaccharide System on Strepto-coccal and Saliva-Derived Biofilms Int. J. Mol. Sci. 2013, 14(7), 13615-13625.
17. Wu D, Fan W, Kishen A, Gutmann JL, Fan BEvaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40(2):285-90.
18. Thomas R, Nair AP, Kr S, Mathew J, Ek R. Antibacterial Activity and Synergistic Effect of Biosynthe-sized AgNPs with Antibiotics Against Multidrag-Resistant Biofilm-Forming Coagulase-Negative Staphylococci Isolated from Clinical Samples. Appl Biochem Biotechnol. http://www.ncbi.nlm.nih.gov/pubmed/24699812.
19. Buzulukov YuP, Arianova EA, Demin VF i dr. Izuchenie bionakopleniya nanochastits serebra i zolota v organakh i tkanyakh krys metodom neytronno-aktivatsionnogo analiza. Izvestiya ran. Seriya biologicheskaya. 2014;3:1-10. Russian.
20. Gmoshinskiy IV, Khotimchenko SA, Popov VO. Nanomaterialy i nanotekhnologii: metody analiza i kontrolya. Uspekhi khimii. 2013;82(1):48-76. Russian.