Irkutsk, Russian Federation
I. Kant Baltic Federal University
Kaliningrad, Russian Federation
Nizhniy Novgorod, Russian Federation
Kaliningrad, Russian Federation
I. Kant Baltic Federal University
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
Tomsk, Tomsk, Russian Federation
Irkutsk, Russian Federation
Tomsk, Tomsk, Russian Federation
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
OKSO 03.06.01 Физика и астрономия
BBK 26 Науки о Земле
TBK 6326 Физика атмосферы
We present the results of complex obser-vations of various parameters of the middle and upper atmosphere over Siberia in December 2012 – January 2013, during a major sudden stratospheric warming (SSW) event. We analyze variations in ozone concentration from microwave measurements, in stratosphere and lower mesosphere temperatures from lidar and satellite measurements, in the F2-layer critical frequency (foF2), in the total electron content (TEC), as well as in the ratio of concentrations of atomic oxygen to molecular nitrogen (O/N2) in the thermosphere. To interpret the observed disturbances in the upper atmosphere, the experimental measurements are compared with the results of model calculations obtained with the Global Self-consistent Model of Thermosphere—Ionosphere—Protonosphere (GSM TIP). The response of the upper atmosphere to the SSW event is shown to be a decrease in foF2 and TEC during the evolution of the warming event and a prolonged increase in O/N2, foF2, and TEC after the SSW maximum. For the first time, we observe the relation between the increase in stratospheric ozone, thermospheric O/N2, and ionospheric electron density for a fairly long time (up to 20 days) after the SSW maximum at midlatitudes.
sudden stratospheric warming, ozone, stratosphere, ionosphere, electron density, total electron content, atmosphere-ionosphere coupling
1. Baldwin M.P., Dameris M., Shepherd T.G. How will the stratosphere affect climate change? Science. 2007, vol. 316, pp. 1576–1577. DOI: 10.1126/science.1144303.
2. Bessarab F.S., Korenkov Yu.N., Klimenko M.V., Klimenko V.V., Karpov I.V., Ratovsky K.G., Chernigovskaya M.A. Modeling the effect of sudden stratospheric warming within the thermosphere–ionosphere system. J. Atmos. Solar-Terr. Phys. 2012, vol. 90–91, pp. 77–85. DOI: 10.1016/j. jastp.2012.09.005.
3. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Climate. 2007, vol. 20, pp. 449–469. DOI: 10.1175/JCLI3996.1.
4. Chau J.L., Fejer B.G., Goncharenko L.P. Quiet variability of equatorial E×B drifts during a sudden stratospheric warming event. Geophys. Res. Lett. 2009, vol. 36, L05101. DOI: 10.1029/2008GL036785.
5. Chau J.L., Aponte N.A., Cabassa E., Sulzer M.P., Goncharenko L.P., Gonzalez S.A. Quiet time ionospheric variability over Arecibo during sudden stratospheric warming events. J. Geophys. Res. 2010, vol. 115, A00G06. DOI: 10.1029/2010JA015378.
6. Chau J.L., Goncharenko L.P., Fejer B.G., Liu H.L. Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci. Rev. 2012, vol. 168, pp. 385–417. DOI: 10.1007/s11214-011-9797-5.
7. Christensen A.B., Paxton L.J., Avery S., Craven J., Crowley G., Humm D.C., et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 2003, vol. 108, iss. A12, CiteID 1451. DOI: 10.1029/ 2003JA009918.
8. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, vol. 137, pp. 553–597. DOI: 10.1002/qj.828.
9. Dow J.M., Neilan R.E., Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. of Geodesy. 2009, vol. 83, pp. 191–198. DOI: 10.1007/s001 90-008-0300-3.
10. Fuller-Rowell T., Wu F., Akmaev R., Fang T.-W., Araujo-Pradere E. A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics. J. Geophys. Res. 2010, vol. 115, A00G08. DOI: 10.1029/2010JA015524.
11. Hocke K., Lainer M., Schanz A. Composite analysis of a major sudden stratospheric warming. AnGeo Comm. 2015, vol. 33, pp. 783–788. DOI: 10.5194/angeocom-33-783-2015.
12. Goncharenko L., Zhang S.-R. Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 2008, vol. 35, L21103. DOI: 10.1029/ 2008GL035684.
13. Goncharenko L.P., Chau J.L., Liu H.L., Coster A.J. Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 2010a, vol. 37, L10101. DOI: 10.1029/201 0GL043125.
14. Goncharenko L.P., Coster A.J., Chau J.L., Valladares C.E. Impact of sudden stratospheric warmings on equatorial ionization anomaly. J. Geophys. Res. 2010b, vol. 115 (A10), DOI: 10.1029/ 2010JA015400.
15. Goncharenko L.P., Chau J.L., Condor P., Coster A., Benkevitch L. Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013. Geophys. Res. Lett. 2013, vol. 40, pp. 1–5. DOI: 10.1002/grl.50980.
16. Goncharenko L.P., Coster A.J., Plumb R.A., Domeisen D.I.V. The potential role of stratospheric ozone in the stratosphere‐ionosphere coupling during stratospheric warmings. Geophys. Res. Lett. 2012, vol. 39, L08101. DOI: 10.1029/20 12GL051261.
17. Klimenko M.V., Klimenko V.V., Koren’kov Y.N., Bessarab F.S., Karpov I.V., Ratovsky K.G., Chernigovskaya M.A. Modeling of response of the thermosphere-ionosphere system to sudden stratospheric warmings of years 2008 and 2009. Cosmic Res. 2013, vol. 51, no. 1, pp. 54–63. DOI: 10.1134/S0010 95251301005X.
18. Klimenko M.V., Klimenko. V.V., Bessarab F S., Korenkov Y.N., Liu. H., Goncharenko L.P., Tolstikov M.V. Study of the thermospheric and ionospheric response to the 2009 sudden stratospheric warming using TIME-GCM and GSM TIP models: First results. J. Geophys. Res.: Space Phys. 2015, vol. 120. DOI: 10.1002/2014JA020861.
19. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., Ratovsky K.G., Korenkova N.A., Yasyukevich Yu.V., Mylnikova A.A., Cherniak Iu.V. Similarity and differences in morphology and mechanisms of the foF2 and TEC disturbances during the geomagnetic storms on 26–30 September 2011. Ann. Geophys. 2017, vol. 35, pp. 923–938. DOI: 10.5194/angeo-35-923-2017.
20. Klimenko M.V., Bessarab F.S., Sukhodolov T.V., Klimenko V.V., Koren’kov Yu.N., Zakharenkova I.E., Chirik N.V., Vasil’ev P.A., Kulyamin D.V., Shmidt Kh., Funke B., Rozanov E.V. Ionospheric Effects of the Sudden Stratospheric Warming in 2009: Results of Simulation with the First Version of the EAGLE Model. Russian Journal of Physical Chemistry B. 2018, vol 12, no. 4, pp 760–770. DOI: 10.1134/S1990793 118040103.
21. Klimenko M.V., Klimenko V.V., Despirak I.V., Zakharenkova I.E., Kozelov B.V., Cherniakov S.M., Andreeva E.S., Tereshchenko E.D., Vesnin A.M., Korenkova N.A., Gomonov A.D., Vasiliev E.B., Ratovsky K.G. Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30° E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015. J. Atmos. Solar-Terr. Phys. 2018b. DOI: 10.1016/j.jastp.2017.12.017.
22. Korenkov Yu.N., Klimenko V.V., Forster, M. Bessarab, F.S. Surotkin V.A. Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31 1990. J. Geophys. Res. 1998, vol. 103(A7), pp. 14697–14710. DOI: 10.1029/98JA00210.
23. Korenkov Y.N., Klimenko V.V., Klimenko M.V., Bessarab F.S., Korenkova N.A., Ratovsky K.G., Chernigovskaya M.A., Shcherbakov A.A., Sahai Y., Fagundes P.R., de Jesus R., de Abreu A.J., Condor P. The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event. J. Geophys. Res. 2012, vol. 117, A10309. DOI: 10.1029/2012JA018018.
24. Kulikov Y.Y., Krasilnikov A.A., Ryskin V.G., Shanin V.N., Shchitov A.M. Ground-based microwave instrument for stratospheric ozone measurements: New design and some results of observations. Proc. 30th Annual Seminar “Physics of Auroral Phenomena”. 2007, pp. 218–221.
25. Kulikov Yu.Yu., Krasil’nikov A.A., Ryskin V.G. Microwave Studies of the Structure of the Polar-Latitude Ozone Layer during Winter Anomalous Warming Events in the Stratosphere. Izvestiya. Atmospheric and Oceanic Physics. 2002, vol. 38, no. 2, pp. 158–166.
26. Labitzke K. Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J. Atmos. Sci. 1972, vol. 29, pp. 756–766. DOI: 10.1175/1520-0469(1972)029<0756:TCITMA>2.0.CO;2.
27. Labitzke K. Stratospheric-mesospheric midwinter disturbances: a summary of observed characteristics. J. Geophys. Res. 1981, vol. 86 (C10), pp. 9665–9678. DOI: 10.1029/JC086 iC10p09665.
28. Laskar F.I., Pallamraju D. Does sudden stratospheric warming induce meridional circulation in the mesosphere–thermosphere system? J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 10,133–10,143. DOI: 10.1002/2014JA020086.
29. Liu H.-L., Roble R.G. A study of a self-generated stratospheric sudden warming and its mesospheric–lower thermospheric impacts using the coupled TIME-GCM/CCM3. J. Geophys. Res. 2002, vol. 107 (D23), 4695. DOI: 10.1029/20 01JD001533.
30. Lukianova R., Kozlovsky A., Shalimov S., Ulich T., Lester M. Thermal and dynamical perturbations in the winter polar mesosphere-lower thermosphere region associated with sudden stratospheric warmings under conditions of low solar activity. J. Geophys. Res.: Space Phys. 2015, vol. 120. DOI: 10.1002/2015 JA021269.
31. Manney G.L., Lawrence Z.D., Santee M.L., Livesey N.J., Lambert A., Pitts M.C. Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmos. Chem. Phys. 2015, vol. 15, pp. 5381–5403. DOI: 10.5194/acp-15-5381-2015.
32. Marichev V.N., Matvienko G.G., Lisenko A.A., Bochkovsky D.A., Kulikov Yu.Yu., Krasilnikov A.A., Ryskin V.G., Demkin V.M. Microwave and optical observations of ozone and temperature of the middle atmosphere during stratospheric warming in the Western Siberia. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2014, vol. 27, no. 01, pp. 46–52. (In Russian).
33. Matsuno T. A dynamical model of the stratospheric sudden warming. J. Atm. Sci. 1971, vol. 28, pp. 1479–1494.
34. Matvienko G.G., Banakh V.A., Bobrovnikov S.M., Burlakov V.D., Veretennikov V.V., Kaul B.V., Krekov G.M., Marichev V.N. Development of technologies of the atmosphere laser sounding. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2009, vol. 22, no. 10, pp. 915–930. (In Russian).
35. Matvienko G.G., Kulikov Y.Y., Marichev V.N., Bochkovsky D.A., Krasilnikov A.A., Ryskin V.G. Study of the influence of the stratospheric warming in January 2013 on the vertical structure of ozone and temperature in the middle atmosphere over Tomsk using microwave and lidar diagnostics. ILRC 27 EPJ Web of Conferences. 2016, vol. 119, 24002. DOI: 10.1051/epjconf/2016119224002.
36. Medvedeva I., Medvedev A., Ratovsky K., Shcherbakov A., Tolstikov M. Comprehensive study of disturbances of the neutral atmosphere and ionosphere parameters over Eastern Siberia during the 2013 January major sudden stratospheric warming. Adv. Space Res. 2015, vol. 56, pp. 1877–1885. DOI: 10.1016/j.asr.2015.06.008.
37. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., Glushchenko T.A., Naumova N.M. Global model of the thermosphere–ionosphere–protonosphere system. Pure and Applied Geophys. 1988, vol. 127, no. 2/3, pp. 219–254. DOI: 10.1007/BF00879812.
38. Pancheva D., Mukhtarov P. Stratospheric warmings: The atmosphere — ionosphere coupling paradigm. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 1697–1702. DOI: 10.1016/j. jastp.2011.03.006.
39. Pedatella N.M., Liu H.-L., Sassi F., Lei J., Chau J.L., Zhang X. Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 3828–3843. DOI: 10.1002/2014JA019849.
40. Pogoreltsev A.I., Savenkova E.N., Pertsev N.N. Sudden stratospheric warmings: the role of normal atmospheric modes. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2014, vol. 54, no. 3, pp. 387–403. (In Russian). DOI: 10.7868/S0016794014020163.
41. Polyakova A.S., Chernigovskaya M.A., Perevalova N.P. Ionospheric effects of sudden stratospheric warmings in Eastern Siberia region. J. Atmos. Solar-Terr. Phys. 2014, vol. 120, pp. 15–23. DOI: 10.1016/j.jastp.2014.08.011.
42. Schoeberl M.R. Stratospheric warmings: observations and theory. Rev. Geophys.: Space Phys. 1978, vol. 16 (4), pp. 521–538.
43. Scheiben D., Straub C., Hocke K., Forkman P., Kampfer N. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers. Atmos. Chem. Phys. 2012, vol. 12, pp. 7753–7765. DOI: 10.5194/acp-12-7753-2012.
44. Shepherd M.G., Shepherd G.G. Stratospheric warming effects on thermospheric O(1S) dayglow dynamics. J. Geophys. Res. 2011, vol. 116, A11327. DOI: 10.1029/2011JA016762.
45. Shepherd M.G., Cho Y.‐M., Shepherd G.G., Ward W., Drummond J.R. Mesospheric temperature and atomic oxygen response during the January 2009 major stratospheric warming. J. Geophys. Res. 2010, vol. 115, A07318, DOI: 10.1029/2009JA0 15172.
46. Shpynev B.G., Churilov S.M., Chernigovskaya M.A. Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere. J. Atm. Solar-Terr. Phys. 2015a, vol. 136, Part B, pp. 201–215. DOI: 10.1016/j.jastp.2015.07.005.
47. Shpynev B.G., Kurkin V.I., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., Grigorieva S.A., Stepanov A.E., Bychkov V.V., Pancheva D., Mukhtarov P. High-midlatitude ionosphere response to majorstratospheric warming. Earth, Planets and Space. 2015b, vol. 67:18. DOI: 10.1186/ s40623-015-0187-1.
48. Smyshlyaev S.P., Pogoreltsev A.I., Drobashevskaya E.A., Galin V.Y. Influence of wave activity on the composition of the polar stratosphere. Geomagnetism and Aeronomy. 2016, vol. 56, no. 1, pp. 95–109. DOI: 10.1134/S0016793215060146.
49. Solomonov S.V., Kropotkina E.P., Rozanov S.B., Ignat’ev A.N., Lukin A.N. Influence of strong sudden stratospheric warmings on ozone in the middle stratosphere according to millimeter wave observations. Geomagnetism and Aeronomy. 2017, vol. 57, no. 3, pp. 361–368, DOI: 10.1134/S0016793217020141.
50. Strickland D.J., Meier R.R., Walterscheid R.L., Craven J.D., Christensen A.B., Paxton L.J., Morrison D., Crowley G. Quiet-time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow. J. Geophys. Res. 2004, vol. 109, A01302. DOI: 10.1029/2003JA010220.
51. Sun L., Robinson W.A. Downward influence of stratospheric final warming events in an idealized model. Geophys. Res. Lett. 2009, vol. 36, L03819. DOI: 10.1029/2008GL036624.
52. Tao M., Konopka P., Ploeger F., Grooß J.-U., Müller R., Volk C.M., Walker K.A., Riese M. Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere. Atmos. Chem. Phys. 2015, vol. 15, pp. 8695–8715. DOI: 10.5194/acp-15-8695-2015.
53. Yasyukevich A.S. Variations in ionospheric peak electron density during sudden stratospheric warmings in the Arctic region. J. Geophys. Res.: Space Phys. 2018, vol. 123. DOI: 10.1002/2017JA024739.
54. Yasyukevich Yu.V., Mylnikova A.A., Polyakova A.S. Estimating the total electron content absolute value from the GPS/GLONASS data. Res. Phys. 2015, vol. 5, pp. 32–33. DOI: 10.1016/j.rinp.2014.12.006.
55. Yasyukevich A.S., Chernigovskaya M.A., Mylnikova A.A., Shpynev B.G., Khabituev D.S. Studying the seasonal pattern of ionospheric variability over Eastern Siberia and Far East region from GPS/GLONASS data. Sovremennye problem distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2017, vol. 14, no. 3, pp. 226–239. (In Russian). DOI: 10.21046/ 2070-7401-2017-14-4-249-262.
56. Yue X., Schreiner W.S., Lei J., Rocken C., Hunt D.C., Kuo Y.-H., Wan W. Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. 2010, vol. 115, A00G09. DOI: 10.1029/2010JA015466.
57. URL: http://www.esrl.noaa.gov (accessed July 2, 2018).
58. URL: https://gmao.gsfc.nasa.gov/reanalysis/MERRA (accessed July 2, 2018).
59. URL: https://disc.gsfc.nasa.gov/datasets (accessed July 2, 2018).
60. URL: http://ckp-angara.iszf.irk.ru (accessed July 2, 2018).