Yakutsk, Russian Federation
Yakutsk, Russian Federation
The electron temperature enhancement is known to occur in the main ionospheric trough during geomagnetic disturbances. In this paper, we study fea-tures of the formation of the electron temperature (Te) enhancement in the subauroral ionosphere by comparing results of the numerical simulation with measurements of Te onboard the CHAMP satellite under moderate geomagnetic activity conditions. It is shown that depending on the terminator position and universal time (UT), the location of the enhanced Te regions in the subauroral ionosphere varies in different seasons. So, in winter ring-shaped and sickle-shaped regions can be formed, whereas during the equinox and summer periods sickle-shaped regions of different lengths and clarity are generally observed.
subauroral ionosphere, numerical model, electron temperature enhancement, seasonal features, ring current, ring-shaped and sickle-shaped regions, CHAMP
ВВЕДЕНИЕ
В работах [Brace et al., 1982; Kofman, 1984; Prölls, 2006] по экспериментальным данным были обнаружены эффекты повышения температуры электронов в субавроральной ионосфере. В работе [Prölls, 2006] по данным спутника DE-2 исследовано повышение температуры электронов Te в субавроральной ионосфере. Установлено, что область повышения Te пространственно совпадает с положением главного ионосферного провала (ГИП). Численному моделированию теплового режима высокоширотной ионосферы, включая субавроральную, посвящен ряд работ [Клименко и др., 1991; Мингалева, Мингалев, 1992; David et al., 2011; Mingaleva, Mingalev, 1996; Prölls, 2006; Schunk et al., 1986], в которых изучены причины формирования областей с повышенными температурами. Показано, что повышения Te связаны с нисходящими потоками тепла, электрическими полями и пониженными значениями концентрации электронов ne в области ГИП. В [Бюхнер и др., 1983; Крымский, 1990; Cole, 1965; Prölls, 2006] сделано предположение, что возможной причиной повышения Te в субавроральной ионосфере может быть кольцевой ток, который возрастает в периоды возмущений. Тепло, генерируемое частицами кольцевого тока на высотах нескольких радиусов Земли, за счет высокой теплопроводности электронного газа может передаваться вниз вдоль силовых линий геомагнитного поля на высоты F-слоя ионосферы, приводя к повышению Te.
Целью настоящей работы является исследование особенностей формирования областей повышения Te в субавроральной ионосфере в разные сезоны с помощью численной модели высокоширотной ионосферы и данных ИСЗ CHAMP.
1. Brace L.H., Theis R.F., Hoegy W.R. A global view of F region electron density and temperature at solar maximum. Geophys. Res. Lett. 1982, vol. 9, no. 9, pp. 989–992. DOI: 10.1029/GL009i009p00989.
2. Bryunelli B.E., Namgaladze A.A. Physics of the Ionosphere. Moscow, Nauka Publ., 1988, 528 p. (In Russian).
3. Büchner J., Lehmann H.-R. On possible mechanism of magnetospheric origin of temperature peak in the main ionospheric trough. Physical Processes in Main Ionospheric Trough Region. Praha: Geofyz. Ustav CSAV, 1983, 203 p. (In Russian).
4. Chapman S. The absorption and dissociative of ionizing effect of monochromatic radiation in an atmosphere on a rotation Earth. Proc. Phys. Soc. 1931, vol. 43, no. 5, pp. 483–501. DOI: 10.1088/0959-5309/43/5/302.
5. Cole K.D. Stable auroral red arcs, sinks for energy of Dst main phase. J. Geophys. Res. 1965, vol. 70, no. 7, pp. 1689–1709. DOI: 10.1029/JZ070i007p01689.
6. David M., Schunk R.W., Sojka J.J. The effect of downward electron heat flow and electron cooling processes in the high-latitude ionosphere. J. Atm. Solar-Terr. Phys. 2011, vol. 73, no. 16, pp. 2399–2409. DOI: 10.1016/j.jastp.2011.
7. Fang X., Randall C., Lummerzheim D., Solomon S.C., Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. J. Geophys. Res. 2008, vol. 113, A09311. DOI: 10.1029/2008JA013384.
8. Golikov I.A., Gololobov A.Yu., Popov V.I. Numerical simulation of thermal conditions of the high-latitude ionosphere. Vestnik Severo-Vostochnogo federal’nogo universiteta [Vestnik of North-Eastern Federal University]. 2012, vol. 9, no. 3, pp. 22–28. (In Russian).
9. Golikov I.A., Gololobov A.Yu., Popov V.I. Modeling the electron temperature distribution in F2 region of high-latitude ionosphere for winter solstice conditions. Solar-Terr. Phys. 2016, vol. 2, no. 4, pp. 70–80. DOI: 10.1029/GL009i009p00989.
10. Heppner J.P. Empirical model of high electric field. J. Geophys. Res. 1977, vol. 82, no. 7, pp. 1115–1125. DOI: 10.1029/ JA082i007p01115.
11. Klimenko V.V., Koren’kov Yu.N., Namgaladze A.A., Karpov I.V., Surotkin V.A., Naumova N.M. Numerical simulation of “hot spots” in the Earth’s ionosphere. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy] 1991, vol. 31, no. 3, pp. 554–557. (In Russian).
12. Krymsky P.F. Azimuth currents and plasma heating in the vicinity of the plasmapause during disturbances. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1990, vol. 30, no. 5, pp. 747–752. (In Russian).
13. Kofman W. Very high electron temperature in the daytime F region at Sondrestrom. Geophys. Res. Lett. 1984, vol. 1, no. 9, pp. 912–922. DOI: 10.1029/GL011i009p00919.
14. Mingaleva G.I., Mingalev V.S. Manifestations of the effect of electron temperature increase in the main ionospheric trough due to internal processes in different seasons. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1992, vol. 32, no. 2, pp. 83–87. (In Russian).
15. Mingaleva G.I., Mingalev V.S. The formation of electron temperature hot spots in the main ionospheric trough by the internal processes. Ann. Geophys. 1996, vol. 15, no. 8, pp. 816–825. DOI: 10.1007/s00585-996-0816-x.
16. Picone J.M., Hedin A.E., Drob D.P., et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues. J. Geophys. Res. 2002, vol. 107, no. A12, pp. 1501–1516. DOI: 10.1029/2002JA009430.
17. Prölls G.W. Subauroral electron temperature enhancement in the nighttime ionosphere. Ann. Geophys. 2006, vol. 25, no. 24, pp. 1871–1885.
18. Reigber C., Lühr H., Schwintzer P. CHAMP mission status. Adv. Space Res. 2002, vol. 30, pp. 129–134. DOI: 10.1016/S02 73-1177(02)00276-4.
19. Samarsky A.A. The theory of difference scheme. Moscow, Nauka Publ., 1977, 656 p. (In Russian).
20. Schunk R.W., Nagy A.F. Electron temperature in the F regions of the ionosphere: theory and observations. Rev. Geophys.: Space Phys. 1978, vol. 16, no. 3, pp. 355–399. DOI: 10.1029/RG 016i003p00355.
21. Schunk R.W., Sojka J.J., Bowline M.D. Theoretical study of the electron temperature in the high-Latitude ionosphere for solar maximum and winter conditions. J. Geophys. Res. 1986, vol. 91, no. 11, pp. 12041–12054. DOI: 10.1029/JA091iA11p12041.
22. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral precipitation model and its applications to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI: 10.1016/j.jastp.2013.05.007.
23. Xiong C., Lühr H., Ma S.Y. The subauroral electron density trough: Comparison between satellite observations and IRI-2007 model estimates. Adv. Space Res. 2013, vol. 51, no. 4, pp. 536–544. DOI: 10.1016/j.asr.2011.09.021.
24. URL: http://isdc-old.gfz-potsdam.de (accessed 8 August 2018