Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
GRNTI 27.01 Общие вопросы математики
GRNTI 31.01 Общие вопросы химии
GRNTI 34.01 Общие вопросы биологии
Tomatoes are reported to be the most consumed and processed food in the world. The correlation has been specified between the tomato food consumption expansion and reduction in the risk of certain diseases, including cancer. Researchers from across the globe concentrate on tomato and processing technologies to ensure preservation of its physical, chemical and biological properties. A range of researches have been held to analyze capacities to use tomato components known for high antioxidant activity as potential biologically active compounds. Commonly, such studies concentrate on ripen red tomatoes, though works may be defined that studied green, yellow and orange fruits. There is evidence on correlation between qualitative and quantitative fruit properties and agricultural technologies and tomato varieties used. Bio-fertilizers consisting of microorganisms, defining the plant microbiome, favorably work on quality improvement of agrocultural plants, including tomatoes. Limited irrigation, illumination and other conditions that cause internal plant stress and provoke numerous protective reactions result in mixed findings, where the yield depends on other factors (grade, climate, fertilizers, etc.). Tomato derived products are rich in antioxidant substances the same as waste products. A variety of works focused to study processing techniques and their impact on the tomato quality characteristics. Traditionally, thermal effect decreases the activity of various antioxidant compounds, but makes them more digestible when consumed. The UV exposure used for long to inhibit pathogens on surface of fruits and berries, that cause the spoilage during the storage period, showed its potential to increase the antioxidant activity of fruit and vegetable products as they ripen
Tomatoes, antioxidant characteristics, treatment and processing techniques
1. 1. Shamsheva D.A. and Bogdanov A.R. Kardioprotektivnye effekty sredizemnomorskoy diety [Cardioprotective effect of Mediterranean diet]. Kreativnaya kardiologiya [Creative Cardiology], 2014, no. 1, pp. 57-63.
2. 2. Benhammou S., Heras-González L., Ibánez-Peinado D., Barcelo C., Hamdan M., Rivas A., Mariscal-Arcas M., Olea-Serrano F., and Monteagudo C. Comparison of Mediterranean diet compliance between European and non-European populations in the Mediterranean basin. Appetite, 2016, vol. 107, pp. 521-526. DOI: 10.1016/j.appet.2016.08.117.
3. 3. Bihuniak J.D., Ramos A., Huedo-Medina T., Hutchins-Wiese H., Kerstetter J.E., and Kenny A.M. Adherence to a Mediterranean-Style Diet and Its Influence on Cardiovascular Risk Factors in Postmenopausal Women. Journal of the Academy of Nutrition and Dietetics, 2016, vol. 116, iss. 11, pp. 1767-1775. DOI: 10.1016/j.jand.2016.06.377.
4. 4. Rizza W., De Gara L., Antonelli Incalzi R., and Pedone C. Prototypical versus contemporary Mediterranean Diet. Clinical Nutrition ESPEN, 2016, vol. 15, pp. 44-48. DOI:10.1016/j.clnesp.2016.06.007.
5. 5. Izadi V., Tehrani H., Haghighatdoost F., Dehghan A., Surkan P.J., and Azadbakht L. Adherence to the DASH and Mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition, 2016, vol. 32, iss. 10, pp. 1092-1096. DOI: 10.1016/j.nut.2016.03.006.
6. 6. Castro-Rodriguez J.A., Ramirez-Hernandez M., Padilla O., Pacheco-Gonzalez R.M., Perez-Fernandez V., and Garcia-Marcos L. Effect of foods and Mediterranean diet during pregnancy and first years of life on wheezing, rhinitis and dermatitis in preschoolers. Allergologia et Immunopathologia, 2016, vol. 44, iss. 5, pp. 400-409. DOI: 10.1016/j.aller.2015.12.002.
7. 7. Hogg R.E., Woodside J.V., McGrath A., Young I.S., Vioque J.L., Chakravarthy U., Jong P.T., Rahu M., Seland J., Soubrane G., Tomazzoli L., Topouzis F., and Fletcher A.E. Mediterranean Diet Score and Its Association with Age-Related Macular Degeneration: The European Eye Study. Ophthalmology, 2017, vol. 124, iss. 1, pp. 82-89. DOI: 10.1016/j.ophtha.2016.09.019.
8. 8. Knockaert G., Pulissery S.K., Colle I., Van Buggenhout S., Hendrickx M., and Van Loey A. Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: Effect of additional thermal and high pressure processing. Food Chemistry, 2012, vol. 135, iss.3, pp. 1290-1297. DOI: 10.1016/j.foodchem.2012.05.065.
9. 9. Azzini E. and Maiani G. Chapter 23 - Mediterranean Diet: Antioxidant Nutritional Status. In: The Mediterranean Diet. New York: Academic Press, 2015, pp. 249-257.
10. 10. Borodina E.S., Chaplygina T.V., and Ivanova S.A. Funktsional’nye produkty pitaniya - perspektivy razvitiya [Functional food products - growth prospects]. IV Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Sovremennye tendentsii razvitiya nauki i proizvodstva» [IV International Research-to Practice Conference “Current Science and Production Development Trends”], Kemerovo, 2016, vol. 2, pp. 192-194.
11. 11. Miller D.D., Li T., and Liu R.H. Antioxidants and Phytochemicals. Reference Module in Biomedical Sciences. New York: Academic Press, 2014.
12. 12. Rao V.R. Chapter 7 - Antioxidant Agents. Advances in Structure and Activity Relationship of Coumarin Derivatives. New York: Academic Press, 2016, pp. 137-150.
13. 13. Beta T., Duodu K.G. Bioactives: Antioxidants. Encyclopedia of Food Grains (Second Edition), 2016, vol. 2, pp. 277-282.
14. 14. Altomare R., Cacciabaudo F., Damiano G., Palumbo V.D., Gioviale M.C., Bellavia. M., Tomasello G., and Lo Monte A.I. The mediterranean diet: a history of health. Iranian Journal of Public Health, 2013, vol. 42, iss. 5, pp. 449-457.
15. 15. La Vecchia C. Mediterranean epidemiological evidence on tomatoes and the prevention of digestive-tract cancers. Experimental Biology and Medicine, 1998, vol. 218, iss. 2, pp. 125-128.
16. 16. Agarwal A. and Rao A.V. Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 2000, vol. 163, iss. 6, pp. 739-744.
17. 17. Martinez-Valvercle I., Periage M.J., Provan G., and Chesson A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 2002, vol. 82, iss. 3, pp. 323-330. DOI: 10.1002/jsfa.1035.
18. 18. Dorais M., Ehret D., and Papadopoulos A. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews, 2008, vol. 7, pp. 231-250.
19. 19. Weaver J, Briscoe T., Hou M., Goodman C., Kata S., Ross H., McDougall G., Stewart D., and Riches A. Strawberry polyphenols are equally cytotoxic to tumourigenic and normal human breast and prostate cell lines. International Journal of Oncology, 2009, vol. 34, iss. 3, pp. 777-786. DOI: 10.3892/ijo_00000203.
20. 20. Tan H.L., Thomas-Ahner J.M., Grainger E.M., Wan L., Francis D.M., Schwartz S.J., Erdman J.W., and Clinton S.K. Tomato-based food products for prostate cancer prevention: what have we learned. Cancer and Metastasis Reviews, 2010, vol. 29, iss. 3, pp. 553-568. DOI: 10.1007/s10555-010-9246-z.
21. 21. Choi S.H., Lee S.H., Kim H.J., Lee I.S., Kozukue N., Levin C.E., and Friedman M. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. Journal of Agricultural and Food Chemistry, 2010, vol. 58, iss. 13, pp. 7547-7556. DOI: 10.1021/jf100162j.
22. 22. Palozza P., Simone R.E., Catalano A., and Mele M.C. Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers, 2011, vol. 3, iss. 2, pp. 2233-2235. DOI:10.3390/cancers3022333.
23. 23. Chiva-Blanch G. and Visioli F. Polyphenols and health: Moving beyond antioxidants. Journal of Berry Research, 2012, vol. 2, no. 2, pp. 63-71.
24. 24. Li F., Li S., Li H.B., Deng G.F., Ling W.H., Wu S., and Xu X.R. Antiproliferative activity of peels, pulps and seeds of 61 fruits. Journal of Functional Foods, 2013, vol. 5, iss. 3, pp. 1298-1309. DOI: 10.1016/j.jff.2013.04.016.
25. 25. Li H., Deng Z., Liu R., Loewen S., and Tsao R. Carotenoid compositions of coloured tomato cultivars and contribution to antioxidant activities and protection against H2O2-induced cell death in H9c2. Food Chemistry, 2013, vol. 136, iss. 2, pp. 878-888. DOI: 10.1016/j.foodchem.2012.08.020.
26. 26. Forbes-Hernandez T., Giampieri Y.F., Gasparrini M., Mazzoni L., Quiles J.L., Alvarez-Suarez J.M., and Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: A focus on apoptotic mechanisms. Food and Chemical Toxicology, 2014, vol. 68, pp. 154-182. DOI: 10.1016/j.fct.2014.03.017.
27. 27. Fiedor J. and Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, vol. 6, iss. 2, pp. 466-488. DOI: 10.3390/nu6020466.
28. 28. Pistollato F., Giampieri F., and Battino M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food and Chemical Toxicology, 2015, vol. 75, pp. 58-70. DOI: 10.1016/j.fct.2014.11.004.
29. 29. Paur I., Lilleby W., Bohn S., Hulander E., Klein W., Vlatkovic L., Axcrona K., Bolstad N., Bjoro T., Laake P., Tasken K.A., Svindland A., Eri L.M., Brennhovd B., Carlsen M.H., Fossa S.D., Smeland S.S., Karlsen A.S., and Blomhoff R. Tomato-based randomized controlled trial in prostate cancer patients: Effect on PSA. Clinical Nutrition, 2016, vol. 36, iss. 3, pp. 672-679. DOI: 10.1016/j.clnu.2016.06.014.
30. 30. Afrin S., Gasparrini M., Forbes-Hernandez T.Y., Reboredo-Rodriguez P., Mezzetti B., Varela-Lopez A., Giampieri F., and Battino M. Promising health benefits of the strawberry: A focus on clinical studies. Journal of Agricultural and Food Chemistry, 2016, vol. 64, iss. 22, pp. 4435-4449. DOI: 10.1021/acs.jafc.6b00857.
31. 31. Forbes-Hernandez T.Y., Gasparrini M., Afrin S., Bompadre S., Mezzetti B., Quiles J.L., Giampieri F., and Battino M. The Healthy Effects of Strawberry Polyphenols: Which Strategy behind Antioxidant Capacity?. Critical Reviews in Food Science and Nutrition, 2016, vol. 56, pp. S46-S59. DOI: 10.1080/10408398.2015.1051919.
32. 32. Gomez-Romero M., Arraez-Roman D., Segura-Carretero A., and Fernandez-Gutierrez A. Analytical determination of antioxidants in tomato: Typical components of the Mediterranean diet. Journal of Separation Science, 2007, vol. 30, iss. 4, pp. 452-461. DOI: 10.1002/jssc.200600400.
33. 33. Singh P., Goyal G.K. Dietary lycopene: Its properties and anticarcinogenic effects. Comprehensiva Reviews in Food Science and Food Safety, 2008, vol. 7, iss. 3, pp. 255-270. DOI: 10.1111/j.1541-4337.2008.00044.x.
34. 34. Perez-Conesa D., Garcia-Alonso J., Garcia-Valverde V., Iniesta M.D., Jacob K., Sanchez-Siles L.M., Ros G., and Periago M.J. Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative Food Science and Emerging Technology, 2009, vol. 10, iss. 2, pp. 179-188. DOI: 10.1016/j.ifset.2008.12.001.
35. 35. Mordente A., Guantario B., Meucci E., Silvestrini A., Lombardi E., Martorana G.E., Giardina B., and Bohm V. Lycopene and cardiovascular diseases: An update. Current Medicinal Chemistry, 2011, vol. 18, iss. 8, pp. 1146-1163. WOS:000288988100004.
36. 36. Vallverdu-Queralt A., Medina-Remon A., Andres-Lacueva C., and Lamuela-Raventos R.M. Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chemistry, 2011, vol. 126, iss. 4, pp. 1700-1707. DOI: 10.1016/j.foodchem.2010.12.061.
37. 37. Li H., Deng Z., Liu R., Young J.C., Zhu H., Loewen S., and Tsao R. Characterization of phytochemicals and antioxidant activities of a purple tomato (Solanum lycopersicum L.). Journal of Agricultural and Food Chemistry, 2011, vol. 59, iss. 21, pp. 11803-11811. DOI: 10.1021/jf202364v.
38. 38. Vallverdu-Queralt A., Medina-Remon A., Casals-Ribes I., Andres-Lacueva C., Waterhouse A.L., and Lamuela-Raventos R.M. Effect of tomato industrial processing on phenolic prole and hydrophilic antioxidant capacity. LWT-Food Science and Technology, 2012, vol. 47, iss. 1, pp. 154-160. DOI: 10.1016/j.lwt.2011.12.020.
39. 39. Biddle M., Moser D., Song E.K., Heo S., Payne-Emerson H., Dunbar S.B., Pressler S., and Lennie T. Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure. European Journal of Cardiovascular Nursing, 2013, vol. 12, iss. 4, pp. 377-384. DOI: 10.1177/1474515112459601.
40. 40. Fattore M., Montesano D, Pagano E., Teta R., Borrelli F., Mangoni A., Seccia S., and Albrizio S. Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. Journal of Food Composition and Analysis, 2016, vol. 53, pp. 61-68. DOI: 10.1016/j.jfca.2016.08.008.
41. 41. Giudice R.D., Raiola A., Tenore G.C., Frusciante L., Barone A., Monti D.M., and Rigano M.M. Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. Journal of Functional Foods, 2015, vol. 18, part A, pp. 83-94. DOI: 10.1016/j.jff.2015.06.060.
42. 42. Paiva E.A.S., Sampaio R.A., and Martinez H.E.P. Composition and quality of tomato fruit cultivated in nutrient solutions containing different calcium concentrations. Journal of Plant Nutrition, 1998, vol. 21, iss. 12. pp. 2653-2661. DOI: 10.1080/01904169809365595.
43. 43. Alexander L. and Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 2002, vol. 53, iss. 377, pp. 2039-2055. DOI: 10.1093/jxb/erf072.
44. 44. Yildirim E. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica Sectipn B-solt and Plant Science, 2007, vol. 57, iss. 2, pp. 182-186.
45. 45. Azarmi R., Ziveh P.S., and Satari M.R. Effect of vermicompost on growth: yield and nutrition status of tomato (Lycopersicum esculentum). Pakistan journal of biological sciences: PJBS, 2008, vol. 11, iss. 14, pp. 1797-1802.
46. 46. Zodape S.T., Gupta A., Bhandari S.C., Rawat U.S., Chaudhary D.R., Eswaran K., and Chikara J. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). Journal of Scientific & Industrial Research, 2011, vol. 70, iss. 3, pp. 215-219.
47. 47. Zang Y., Chun I., Zhang L., Hong S., Zheng W., and Xu K. Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry. Scientia Horticulturae, 2016, vol. 200, pp. 13-18. DOI: 10.1016/j.scienta.2015.12.057.
48. 48. Bogale A., Nagle M., Latif S., Aguila M., and Müller J. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Scientia Horticulturae, 2016, vol. 213. pp. 115-124. DOI: 10.1016/j.scienta.2016.10.029.
49. 49. Wu M. and Kubota C. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Scientia Horticulturae, 2008, vol. 116, iss. 2, pp. 122-129. DOI: 10.1016/j.scienta.2007.11.014.
50. 50. Cliff M.A., Li J.B., Toivonen P.M.A., and Ehret D.L. Effects of nutrient solution electrical conductivity on the compositional and sensory characteristics of greenhouse tomato fruit. Postharvest Biology and Technology, 2012, vol. 74, pp. 132-140. DOI: 10.1016/j.postharvbio.2011.12.007.
51. 51. Juarez-Lopez P., Medina-Torres R., Cruz-Crespo E., Reed D.W., Kent M., Cisneros-Zevallos L., King S., and Ramírez-Vallejo P. Effect of electrical conductivity of the nutrient solution on fruit quality of three native tomato genotypes (Lycopersicon esculentum var. cerasiforme). International Symposium on Growing Media and Soilless Cultivation, 2014, pp. 505-508.
52. 52. Liu J., Zhang R., Sun Y., Liu Z., Jin W., and Sun Y. The beneficial effects of exogenous melatonin on tomato fruit properties. Scientia Horticulturae, 2016, vol. 207, pp. 14-20. DOI: 10.1016/j.scienta.2016.05.003.
53. 53. Ochoa-Velasco C.E., Valadez-Blancoa R., Salas-Coronado R., Sustaita-Rivera F., Hernandez-Carlos B., Garcia-Ortegac S., and Santos-Sanchez N.F. Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Scientia Horticulturae, 2016, vol. 201, pp. 338-345. DOI: 10.1016/j.scienta.2016.02.015.
54. 54. Zhu Z., Chen Y., Shi G., and Zhang X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry, 2017, vol. 219, pp. 179-184. DOI: 10.1016/j.foodchem.2016.09.138.
55. 55. Talens P., Mora L., Bramley P.M., and Fraser P.D. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype. Food Chemistry, 2016, vol. 213, pp. 735-741. DOI: 10.1016/j.foodchem.2016.06.079.
56. 56. Abushita A.A., Daood H.G. and Biacs P.A. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, 2000, vol. 48, iss. 6, pp. 2075-2081. DOI: 10.1021/jf990715p.
57. 57. Takeoka G.R., Dao L., Flessa S., Gillespie D.M., Jewell W.T., Huebner B., Bertow D., and Ebeler S.E. Processing effects on lycopene content and antioxidant activity of tomatoes. Journal of Agriculture and Food Chemistry, 2001, vol. 49, iss. 8, pp. 3713-3717. DOI: 10.1021/jf0102721.
58. 58. Lavelli V. and Torresani M.C. Modelling the stability of lycopene-rich by-products of tomato processing. Food Chemistry, 2011, vol. 125, iss. 2, pp. 529-535. DOI: 10.1016/j.foodchem.2010.09.044.
59. 59. Belovic M., Kevresan Z., Pestoric M., and Mastilovic J. The influence of hot air treatment and UV irradiation on the quality of two tomato varieties after storage. Food Packaging and Shelf Life, 2015, vol. 5, pp. 63-67. DOI: 10.1016/j.fpsl.2015.06.002.
60. 60. Severo J., Tiecher A., Pirrello J., Regad F., Latche A., Pech J.-C., Bouzayen M., and Rombaldi C.V. UV-C radiation modifies the ripening and accumulation of ethylene response factor (ERF) transcripts in tomato fruit. Postharvest Biology and Technology, 2015, vol. 102, pp. 9-16. DOI: 10.1016/j.postharvbio.2015.02.001.
61. 61. Liu L.H., Zabaras D., Bennett L.E., Aguas P., and Woonton B.W. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chemistry, 2009, vol. 115, iss. 2, pp. 495-500. DOI: 10.1016/j.foodchem.2008.12.042.
62. 62. Pataro G., Sinik M., Capitoli M.M., Donsì G., and Ferrari G. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science and Emerging Technologies, 2015, vol. 30, pp. 103-111. DOI: 10.1016/j.ifset.2015.06.003.
63. 63. Guerreiro D., Madureira J., Silva T., Melo R., Santos P.M.P., Ferreira A., Trigo M.J., Falcao A.N., Margaca F.M.A., and Verde S.C. Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science & Emerging Technologies, 2016, vol. 36, pp. 1-9. DOI: 10.1016/j.ifset.2016.05.008
64. 64. Bhat R. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chemistry, 2016, vol. 213, pp. 635-640. DOI: 10.1016/j.foodchem.2016.06.096.
65. 65. Chang-hong L., Cai L.Y., Lu X.Y., Han X.X., and Ying T.J. Effect of Postharvest UV-C Irradiation on Phenolic Compound Content and Antioxidant Activity of Tomato Fruit During Storage. Journal of Integrative Agriculture, 2012, vol. 11, iss. 1, pp. 159-165.
66. 66. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 2005, vol. 70, iss. 1, pp. R11-R19. DOI: 10.1111/j.1365-2621.2005.tb09053.x.
67. 67. Stewart A.J., Bozonnet S., Mulluen W., Jenkis G.I., Lean M.E.J., and Crozier A. Occurrence of flavonols in tomato and tomato-based products. Journal of Agriculture and Food Chemistry, 2000, vol. 48, iss. 7, pp. 2663-2669. DOI: 10.1021/jf000070p.
68. 68. Sharma S.K. and Maguer M. Lycopene in tomatoes and tomato pulp fractions. Italian Journal of Food Science, 1996, vol. 8, iss. 2, pp. 107-113.
69. 69. Elbadrawy E. and Sello A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 2016, vol. 9, pp. S1010-S1018. DOI: 10.1016/j.arabjc.2011.11.011.
70. 70. Capanoglu E., Beekwilder J., Boyacioglu D., De Vos R.C., and Hall R.D. The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Critical Reviews in Food Science and Nutrition, 2010, vol. 50, iss. 10, pp. 919-930. DOI: 10.1080/10408390903001503.
71. 71. Gadzhieva A.M., Muradov M.S., Kas’yanov G.I., and Ismailov E.Sh. Ispol’zovanie innovatsionnykh tekhnologiy kompleksnoy pererabotki tomatnogo syr’ya [Use of innovative technologies for the complex tomato stock processing]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Multitopiv Network E-Journal of the Kuban State University of Agriculture], 2014, no. 100, pp. 1767.
72. 72. Novelina N., Nazir N., and Adrian M.R. The Improvement Lycopene Availability and Antioxidant Activities of Tomato (Lycopersicum Esculentum, Mill) Jelly Drink. Agriculture and Agricultural Science Procedia, 2016, vol. 9, pp. 328-334. DOI: 10.1016/j.aaspro.2016.02.144.
73. 73. Tomas M., Beekwilder J., Hall R.D., Sagdic O., Boyacioglu D., and Capanoglu E. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chemistry, 2017, vol. 220, pp. 51-58. DOI: 10.1016/j.foodchem.2016.09.201.
74. 74. Kelebek H., Selli S., Kadiroglu P., Kola O., Kesen S., Ucar B., and Cetiner B. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chemistry, 2017, vol. 220, pp. 31-41. DOI: 10.1016/j.foodchem.2016.09.190.
75. 75. George S., Tourniaire F., Gautier H., Goupy P., Rock E., and Caris-Veyrat C. Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 2011, vol. 124, iss. 4, pp. 1603-1611. DOI: 10.1016/j.foodchem.2010.08.024.
76. 76. Luqmon A., Adebisi S.A., Oyedeji A.O., Adetoro R.O., and Tijani K.O. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slicesin fluenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 2017, vol. 16. Available at: https://doi.org/10.1016/j.jssas.2017.03.002 (accessed 16 March 2017).
77. 77. Gadzhieva A.M. Teoreticheskoe obosnovanie i razrabotka tekhnologii shchadyashchey sushki tomatnogo syr’ya s maksimal’nym sokhraneniem iskhodnykh poleznykh svoystv [Theoretical rationale and development of reduced tomato drying with highest retention of initial nutrients]. Nauchnyy zhurnal KubGAU [KubGAU Sc.Jour], 2014, no. 100(06), pp. 1-11.
78. 78. Ringeisen B., Barrett D.M., and Stroeve P. Concentrated solar drying of tomatoes. Energy for Sustainable Development, 2014, vol. 19, pp. 47-55. DOI: 10.1016/j.esd.2013.11.006.