Study of the human cortex morphology in norm and at the ischemia is due to the desire to identify common patterns and specific features of compensatory neural networks reorganization, seeking means of regulation of destructive and regenerative processes. The emergence of a large amount of information on the nervous tissue mor-phology is the need for increasing the accuracy of morphometric analysis. This requires an assessment of the overall methodological level of modern morphological studies of the human cortex. The authors analyzed the literature and their own data obtained from a morphological study of the human cortex. The main tendencies, current methodological issues and perspective directions of study the structural and functional state of neurons in norm and ischemia are presented. Great attention is paid to the immunohistochemical and morphometric methods of obtaining objective information. Currently there are methodological and methodical basis for further study of the human brain morphology. However, the total number of articles on the study of human brain morphology earned far less than the experimental works. For the fullest use of biopsy material is offered a comprehensive approach, including method of computer-aided analysis of images, immunohistochemistry, morphometry and statistical analysis.
individual, a cortex, cytoarchitectonic
Актуальность исследования структурно-функционального состояния различных отделов, полей, слоев и нейронов коры большого мозга человека в норме и при ишемии обусловлена стремлением выявления общих закономерностей и специфических особенностей пространственной реорганизации нейронных сетей, а также поиском средств регуляции деструктивных и компенсаторно-восстановительных процессов, лежащих в ее основе [18].
Очень важные знания о структурной основе (цито- и гистоархитектоники) функционирования и компенсаторно-восстановительной реорганизации КБМ человека после повреждения получены с помощью морфометрического анализа нейронных популяций после ишемии, травмы, при опухолях мозга на аутопсийном и биопсийном материале [11].
В настоящее время широко используются методы иммуногистохимической идентификации специфических нейрональных и глиальных белков, которые длительно сохраняются в нейронах в аутопсийном материале и после фиксации [21]. В этой связи необходимо обсудить ряд проблем, связанных с получением объективных данных при изучении мозга человека. Прежде всего, необходимо отметить, что появление большого объема информации о структуре нервной ткани сопряжено с потребностью увеличения точности морфометрического анализа клеток и межнейронных синапсов с помощью комплексного использования методов автоматизированного компьютерного анализа изображений, морфометрии и иммуногистохимии.
1. Akulinin V.A., Mytsik A.V., Stepanov S.S. [i dr.] Strukturno-funktsional´noe sostoyanie piramidnykh neyronov kory bol´shogo mozga cheloveka v postreanimatsionnom periode. Vestnik NGU. 2012. T.10. №4. S. 21–28.
2. Blinkov S.M., Glezer I.I. Mozg v tsifrakh i tablitsakh. L.: Meditsina, 1964. 471 s.
3. Mytsik A.V., Stepanov S.S., Larionov P.M., Akulinin V.A. Aktual´nye problemy izucheniya strukturno-funktsional´nogo sostoyaniya neyronov kory bol´shogo mozga cheloveka v postishemicheskom periode. Zhurnal anatomii i gistopatologii. 2012. T.1. №1. S. 37–47.
4. Mytsik A.V., Akulinin V.A., Stepanov S.S. [i dr.]. Immunofluorestsentnaya verifikatsiya i morfometriya aksosomaticheskikh sinapsov neokorteksa cheloveka pri ostroy i khronicheskoy ishemii. Morfologicheskie vedomosti. 2012. №3. S. 53–60.
5. Mytsik A.V., Stepanov S.S., Larionov P.M. [i dr.]. Aktual´nye problemy izucheniya neyroglial´nykh vzaimootnosheniy kory bol´shogo mozga cheloveka v postishemicheskom periode. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2012. № 6. S. 48–51.
6. Mytsik A.V., Akulinin V.A., Stepanov S.S., Larionov P.M. Vliyanie ishemii na neyroglial´nye vzaimootnosheniya lobnoy kory bol´shogo mozga cheloveka. Omskiy nauchnyy vestnik. 2013. №1(118). S. 74-77.
7. Mytsik A.V., Akulinin V.A., Stepanov S.S., Larionov P.M. Immunogistokhimicheskaya i morfometricheskaya kharakteristika mezhneyronnykh vzaimootnosheniy lobnoy kory bol´shogo mozga cheloveka pri ostroy i khronicheskoy ishemii. Vestnik NGU. 2013. T.11. №3. S. 154–161.
8. Okhotin V.E., Kalinichenko S.G. Gistofiziologiya korzinchatykh kletok neokorteksa. Morfologiya. 2001. T. 120. № 4. S. 7–24.
9. Savel´ev S.V. Sravnitel´naya anatomiya nervnoy sistemy pozvonochnykh. M.: Geotar-med, 2001. 272 s.
10. Khrenov F.I., Belichenko P.V., Shamakina I.Yu. Kolichestvennyy analiz sinaptofizina (r38) v mozge potomstva vtorogo pokoleniya ot samtsov krys s dlitel´noy morfinnoy intoksikatsiey. Byulleten´ eksper. biol. i med. 2000. T. 129. №1. S. 50–52.
11. Abitz M., Nielsen R.D., Jones E.G. [et al]. Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cereb. Cortex. 2007. V. 17. P. 2573–2578.
12. Andiman S.E., Haynes R.L., Trachtenberg F.L. [et al]. The cerebral cortex overlying periventricular leukomalacia: analysis of pyramidal neurons. Brain Pathol. 2010. V. 20. N4. P. 803–814.
13. Buritica E., Villamil L., Guzman F. [et al]. Changes in calcium-binding protein expression in human cortical contusion tissue. Journal of Neurotrauma. 2009. V.26. P. 2145–2155.
14. Dorph-Petersen K-A., Delevich K.M., Marcsisin M.J. [et al]. Pyramidal neuron number in layer 3 of primary auditory cortex of subjects with schizophrenia. Brain Res. 2009. V. 1285. P. 42–57.
15. Downes E.G., Robson J., Grailly E. [et al]. Loss of synaptophisin and synaptosomal-associated protein 25-kDa (SNAP-25) in elderly Down syndrome individuals. Neuropathol. Appl. Neurobiol. 2008. N 34. N1. P. 12–22.
16. Druga R. Neocortical inhibitory system (cortical interneurons / GABAergic neurons/calcium-binding proteins/neuropeptides). Folia Biologica (Praha). 2009. V. 55. P. 201–217.
17. Fiala J.C. Reconstruct: a free editor for serial section microscopy. Journal of Microscopy. 2005. V. 218. N 1. P. 52–61.
18. Ho S-Y., Chao C-Y., Huang H-L. [et al]. Neurphology J: An automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinformatics. 2011. V. 12. P. 1–18.
19. Lavenex P., Lavenex P.B., Bennett J.L., Amaral D.G. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation. J. Comp Neurol. 2009. V. 512. N1. P. 27–51.
20. Lyck L., Dalmau I., Chemnitz J. [et al]. Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. Journal of Histochemistry & Cytochemistry. 2008. V. 56. N3. P. 201–221.
21. Ong W.Y., Garey L.J., Leong S.K., Reynolds R. Localization of glial fibrillary acidic protein and glutamine synthetase in the human cerebral cortex and subcortical white matter – a double immunolabelling and electron microscopic study. J Neurocytol. 1995. V. 24. N8. P. 602–610.
22. Ong W.Y., Garey L.J., Reynolds R. Distribution of glial fibrillary acidic protein and glutamine synthetase in human cerebral cortical astrocytes – a light and electron microscopic study. J Neurocytol. 1993. V. 22. N10. P. 893–902.
23. Ong W.Y., He Y., Tan K.K., Garey L.J. Differential localisation of the metabotropic glutamate receptor mGluR1a and the ionotropic glutamate receptor GluR2/3 in neurons of the human cerebral cortex. Exp Brain Res. 1998. V. 119. N3. P. 367–374.
24. Ong W.Y., Yeo T.T., Balcar V.J., Garey L.J. A light and electron microscopic study of GAT-1-positive cells in the cerebral cortex of man and monkey. J Neurocytol. 1998. V. 27. N10. P. 719–730.
25. Ong, W.Y., Garey L.J. Ultrastructural features of biopsied temporopolar cortex (area 38) in a case of schizophrenia. Schizophr Res. 1993. V. 10. N1. P. 15–27.
26. Ong, W.Y., Garey, L.J. Neuronal architecture of the human temporal cortex. Anat Embryol (Berl). 1990. V. 181. N4. P. 351–364.
27. Ong, W.Y., Garey, L.J. Ultrastructural characteristics of human adult and infant cerebral cortical neurons. J. Anat. – 1991. – V. 175. – P. 79–104.
28. Shimada A., Keino H., Satoh M. et al. Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse. 2003. Vol. 48. №4. P. 198–204.
29. Tarsa L., Balkowiec A. Nerve growth factor regulates synaptophysin expressing in developing trigeminal ganglion neurons in vitro. Neuropeptides. 2009. V. 43. C. 47–52.
30. Unal-Cevik I., Kilinc M., Gursoy-Ozdemir Y. et al. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004. V. 1015. N 1–2. P. 169–174.
31. Van Otterloo E., O’Dwyer G., Stockmeier C.A. Reductions in neuronal density in elderly depressed are region Specific. Int J Geriatr Psychiatry. 2009. V. 24. N8. P. 856–864.
32. Wang Q., Ishikawa T., Michiue T. [et al]. Quantitative immunohistochemical analysis of human brain basic fibroblast growth factor, glial fibrillary acidic protein and single-stranded DNA expressions following traumatic brain injury. Forensic Sci Int. 2012. V. 221. N1-3. P. 142–151.
33. Xu G.P., Dave K.R., Vivero R. [et al]. Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res. 2002. V. 952. N 2. P.153–158.
34. Yu W., Lee H.K., Hariharan S. [et al]. Quantitative neurite outgrowth measurement based on image segmentation with topological dependence. Cytometry A. 2009. V. 75. N4. P. 289–297.
35. Zink D., Sadoni N., Stelzer E. Visualizing chromatin and chromosomes in living cells. Methods. 2003. V.29. N1. P. 42–50.