Yakutsk, Russian Federation
Yakutsk, Russian Federation
We present and discuss properties of the following magnetic field models in a magnetic cloud: Miller and Turner solution, modified Miller–Turner solution, Romashets–Vandas toroidal and integral models, and Krittinatham–Ruffolo model. Helicity of the magnetic field in all the models is the main feature of magnetic clouds. The first three models describe the magnetic field inside an ideal torus. In the integral model, parameters of a generating torus ambiguously determine the volume and form of the magnetic field region. In the Krittinatham–Ruffolo model, the cross-section radius of the torus is variable, thereby it corresponds more closely to the real form of magnetic clouds in the inner heliosphere. These models can be used to interpret in-situ observations of the magnetic flux rope, to study a Forbush decrease in magnetic clouds and transport effects of solar energetic particles injected into a coronal mass ejection.
magnetic flux rope models, force-free magnetic field, magnetic field lines, toroidal magnetic field, magnetic cloud
1. Burlaga L.F. Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 1988, vol. 93, no. A7, pp. 7217–7224. DOI: 10.1029/JA093iA07p07217.
2. Démoulin P., Nakwacki M.S., Dasso S., Mandrini C.H. Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys. 2008, vol. 250, no. 2, pp. 347–374. DOI: 10.1007/s11207-008-9221-9.
3. Farrugia C.J., Burlaga L.F., Osherovich V.A., Richardson I.G., Freeman M.P., Lepping R.P., Lazarus A.J. A study of an expanding interplanetary magnetic cloud and its interaction with the Earth’s magnetosphere: The interplanetary aspect. J. Geophys. Res. 1993, vol. 98, pp. 7621–7632. DOI: 10.1029/92JA02349.
4. Krittinatham W., Ruffolo D. Drift orbits of energetic particles in an interplanetary magnetic flux rope. Astrophys. J. 2009, vol. 704, pp. 831–841. DOI: 10.1088/0004-637X/704/1/831.
5. Kuwabara T., Munakata K., Yasue S., Kato C., Akahane S., Koyama M., Bieber J.W., et al. Geometry of an interplanetary CME on October 29, 2003 deduced from cosmic rays. Geophys. Res. Lett. 2004, vol. 31, p. L19803.
6. Leitner M., Farrugia C.J., Möstl C., Ogilvie K.W., Galvin A.B., Schwenn R., Biernat H.K. Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res. 2007, p. 112. DOI: 10.1029/ 2006JA011940.
7. Lepping R.P., Jones J.A., Burlaga L.F. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 1990, vol. 95, pp. 11957–11965. DOI: 10.1029/JA095iA 08p11957.
8. Lundquist S. Magnetohydrostatic fields. Ark. Fys. 1950, vol. 2, p. 361.
9. Marubashi K., Lepping R.P. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 2007. V. 25, P. 2453–2477. DOI: 10.5194/angeo-25-2453-2007.
10. Miller G., Turner L. Force free equilibria in toroidal geometry. Physics of Fluids. 1981, vol. 24, pp. 363–365. DOI: 10.1063/1.863351.
11. Petukhova A.S., Petukhov I.S., Petukhov S.I. Forbush decrease in the intensity of cosmic rays in a toroidal model of a magnetic cloud. JETP Lett. 2015, vol. 102, pp. 697–700.
12. Romashets E.P., Vandas M. Force-free field inside a toroidal magnetic cloud. Geophys. Res. Lett. 2003a, vol. 30, pp. 2065–2069. DOI: 10.1029/2003GL017692.
13. Romashets E.P., Vandas M. Interplanetary magnetic clouds of toroidal shapes. Proc. of International Solar Cycle Studies (ISCS) 2003 Symposium. 2003b, pp. 535–540. DOI: 10.1051/0004-6361/200911701.
14. Romashets E.P., Vandas M. Linear force-free field of a toroidal symmetry. Astron. Astrophys. 2009, vol. 499, pp. 17–20.
15. Vandas M., Romashets E.P. Comparative study of a constant-alpha force-free field and its approximations in an ideal toroid. Astron. Astrophys. 2015, vol. 580, p. A123. DOI: 10.1051/0004-6361/201526242.
16. URL: https://github.com/ivanpetukhov1978/Models-of-magnetic-field/releases/tag/1.0 (accessed March 1, 2019).