employee from 01.01.1974 until now
Rostov-on-Don, Rostov-on-Don, Russian Federation
employee
Krasnodar, Krasnoyarsk, Russian Federation
VAC 05.02.2008 Технология машиностроения
UDK 62 Инженерное дело. Техника в целом. Транспорт
GRNTI 20.01 Общие вопросы информатики
GRNTI 20.15 Организация информационной деятельности
GRNTI 20.17 Документальные источники информации
GRNTI 20.19 Аналитико-синтетическая переработка документальных источников информации
GRNTI 55.01 Общие вопросы машиностроения
GRNTI 55.03 Машиноведение и детали машин
GRNTI 55.13 Технология машиностроения
GRNTI 55.15 Литейное производство
GRNTI 55.16 Кузнечно-штамповочное производство
GRNTI 55.18 Сборочное производство
GRNTI 55.19 Резание материалов
GRNTI 55.20 Электрофизикохимическая обработка
GRNTI 55.21 Термическая и упрочняющая обработка
GRNTI 55.22 Отделка поверхностей и нанесение покрытий
GRNTI 55.23 Производство изделий из порошковых материалов
GRNTI 55.24 Производство неметаллических изделий
GRNTI 55.29 Станкостроение
GRNTI 55.30 Робототехника
GRNTI 55.31 Инструментальное производство
GRNTI 55.33 Горное машиностроение
GRNTI 55.35 Металлургическое машиностроение
GRNTI 55.37 Турбостроение
GRNTI 55.41 Локомотивостроение и вагоностроение
GRNTI 55.42 Двигателестроение
GRNTI 55.43 Автомобилестроение
GRNTI 55.45 Судостроение
GRNTI 55.47 Авиастроение
GRNTI 55.51 Подъемно-транспортное машиностроение
GRNTI 55.53 Строительное и дорожное машиностроение
GRNTI 55.55 Коммунальное машиностроение
GRNTI 55.57 Тракторное и сельскохозяйственное машиностроение
GRNTI 55.69 Прочие отрасли машиностроения
GRNTI 73.01 Общие вопросы транспорта
GRNTI 73.29 Железнодорожный транспорт
GRNTI 73.31 Автомобильный транспорт
GRNTI 73.39 Трубопроводный транспорт
GRNTI 73.41 Промышленный транспорт
The paper reports the results of investigations on the increase of effectiveness and productivity of machinery finishing-strengthening. The design search of combined screw rotors with the triangular surface along the perimeter was carried out by methods of descriptive geometry and engineering drawing with the aid of “Compass-3D” program complex. The design and operation principle of equipment on the basis of executive organs as combined screw rotors with the triangular surface along the perimeter are shown by the example of the plant for finishing-cleaning and strengthening. For the development of the procedure for calculation of such equipment there is carried out a theoretical investigation of the motion of parts under machining and particles of working environment in combined screw rotors. In the classification developed of equipment executive organs in the form of combined screw rotors there are presented different forms of their surface along the perimeter.
finishing-strengthening, executive organ, combined rotor, triangular surface, perimeter, charging mass
Введение
Комбинированные винтовые роторы с треугольной поверхностью по периметру позволяют придавать обрабатываемым предметам (деталям и средам) движение с большой амплитудой за счет своей оригинальной формы, что повышает производительность и качество обработки. Все показанные в статье образцы оборудования, созданные методами начертательной геометрии и инженерной графики, являются, по классификации академика Л.Н. Кошкина, машинами четвертого класса, предметы обработки в которых обрабатываются пространством [1-12].
Методы и пути совершенствования рабочих органов станков
На рис. 1 показана установка для отделочно-зачистной и упрочняющей обработки, состоящая из комбинированного винтового ротора 1, снабженного средствами для загрузки (2) и выгрузки (3) обработанных деталей, средства для выгрузки отходов производства 4 (облой, окалина, заусенцы). Привод на рис. 1 не показан. В комбинированном винтовом роторе 1 к торцевым стенкам прикреплены цапфы 5 и 6, что обеспечивает возможность его вращения в подшипниковых опорах 7 и 8. Для создания условий бесперебойной подачи внутрь ротора предметов обработки носок 9 введен в отверстие цапфы 5. Средство для загрузки 2, подшипниковые опоры 7 и 8 вместе с комбинированным винтовым ротором 1 закреплены на платформе 10, которая с помощью четырех пружин 11 упруго закреплена на основании 12. В установке смонтировано приспособление, которое регулирует угол наклона оси вращения ротора относительно горизонта (на рис. 1 не показано). Загрузочная цапфа 5 и разгрузочная цапфа 6 снабжены пружинами 13 и 14 с квадратным сечением витков, жестко прикрепленными к их внутренней поверхности.
Комбинированный винтовой ротор 1 (рис. 2) выполнен в виде винтового наклонного усеченного конуса с винтовой боковой поверхностью треугольной формы по периметру и плоскими основаниями в виде торцевых щек эллиптической формы 15 и 16, смонтированных под острым углом β одна к другой и под разными острыми углами ψ и φ к оси вращения ротора. При этом комбинированный винтовой ротор 1 установлен под острым углом α к оси его вращения и снабжен загрузочной и разгрузочной цапфами 5 и 6 конической формы с уклоном в сторону выгрузки и жестко закрепленными по их внутренним диаметрам коническими пружинами 13 и 14 с витками квадратного сечения и уклоном в сторону выгрузки. Большие оси i1-i1 и i2-i2 (рис. 3) торцевых щек 15 и 16 ротора 1 повернуты относительно друг друга на острый угол ω, при этом треугольная боковая поверхность по его периметру сгибается с образованием винтовых поверхностей. По периметру выгрузной цапфы 6 выполнены отверстия 17, позволяющие отделять в средство для отходов 4 отходы производства (заусенцы, облой, окалину) от обработанных деталей, которые выгружаются в емкость 3.
|
Рис. 1. Установка для отделочно-зачистной и упрочняющей обработки
Рис. 2. Комбинированный винтовой ротор
Посредством средства для загрузки обрабатываемые детали, совместно с частицами рабочих сред (массы загрузки) непрерывным потоком подаются внутрь конической загрузочной цапфы и с помощью витков прямоугольного сечения загружаются во вращающийся барабан. При вращении комбинированного винтового ротора 1 массы загрузки совершают движение по различным эллиптическим траекториям. Созданный эксцентриситет нарушает скорость и направление движения масс загрузки, и им сообщаются низкочастотные колебания с большой амплитудой. Этому способствуют винтовая треугольная боковая поверхность комбинированного винтового ротора 1 и карманы треугольной формы по внутреннему периметру ротора, которые захватывают порции масс загрузки при его вращении, поднимают выше угла естественного откоса и бросают на противоположные стенки ротора, навстречу его вращающейся боковой поверхности, увеличивая частоту и энергоемкость взаимодействия обрабатываемых деталей и частиц рабочих сред.
За счет дебаланса масс комбинированного ротора 1 и размещенных внутри него обрабатываемых деталей и частиц рабочих сред, а также средства для загрузки и платформы, упруго установленных на станине, создаются высокочастотные колебания с малой амплитудой. Совместное воздействие на массы загрузки высокочастотных колебаний с малой амплитудой и низкочастотных колебаний с большой амплитудой, а также нарушения скорости и направления движения масс загрузки, в том числе под воздействием криволинейности винтовых канавок треугольной формы в продольном направлении по внутреннему периметру комбинированного винтового ротора 1, повышают производительность и расширяют технологические возможности.
Рис. 3. Наглядное изображение комбинированного винтового ротора
Массы загрузки движутся в вертикальной плоскости по эллиптическим траекториям, а в горизонтальной плоскости - возвратно-поступательно. На эти движения воздействуют не только колебания, возбуждаемые асимметричным положением комбинированного винтового ротора 1, но и колебания в трех взаимно перпендикулярных направлениях, а также колебания, создаваемые чередующимися выступами и впадинами треугольной боковой поверхности ротора.
Поток движущихся деталей и частиц рабочих сред нестационарен. В результате воздействия разнонаклоненных торцевых стенок 15 и 16, а также геометрического уклона комбинированного винтового ротора 1 массы загрузки двигаются по сложным траекториям и перемещаются в осевом направлении.
Скорость перемещения масс загрузки от загрузки к выгрузке можно менять регулированием угла наклона всей установки для отделочно-зачистной и упрочняющей обработки.
Результаты исследования
Для создания методик расчета оборудования на базе комбинированных винтовых роторов проведено теоретическое исследование (моделирование) движения обрабатываемых деталей и частиц рабочих сред во внутренней полости ротора, а также моделирование явления увлекаемости массы его стенками.
Установившийся процесс реального движения частиц рабочих сред и деталей в комбинированных винтовых роторах (в рабочей камере) можно считать в некотором смысле «взвешенным», сопровождающимся контактными явлениями, когда давление в нижней части вращающегося ротора выше по сравнению с верхними слоями. При этом можно считать, что вся засыпаемая при его вращении масса m равномерно распределена по его объему .
Будем рассматривать движение масс загрузки в поперечной плоскости ХОУ (рис. 4), используя свойство постоянства угла наклона винтовой линии к продольной оси комбинированного винтового ротора.
Рис. 4. Схема движения частицы
масс загрузки в комбинированном
винтовом роторе
Если в плоскости XOY ввести полярную систему координат (ρ, φ), то, как известно, система дифференциальных уравнений будет иметь вид [13]
, (1)
где ρ – некоторый радиус вращения, зависящий от геометрии стенок вращающегося в плоскости сечения XOY комбинированного винтового ротора (в зависимости от характера моделируемых сил); – моделируемые силы; m – масса точки (m1 – деталь, шар с радиусом r1; m2 – частица рабочей среды, шар с радиусом r2); производные по времени: .
Заметим, что уравнение (1) может описывать и движение, стесненное боковой поверхностью вращающегося комбинированного винтового ротора.
величина Wxy общего ускорения:
2)
Величина ускорения Wz точки М вдоль оси Z:
(3)
После интегрирования становятся известными характеристики движения масс загрузки ( ) вдоль продольной оси комбинированного винтового ротора в направлении, противоположном оси Z. Условное ускорение
4)
упростим:
. (5)
Из левой части второго уравнения системы (1) и условия (3) получим:
.
Тогда продольная скорость перемещения детали (частицы):
, (6)
где C – постоянная интегрирования.
На рис. 4 показана схема получения зависимости (6), где ; ) - в ; - в направлении центра [14; 15];
При ρ = r = const, зависимость (2) имеет вид
.
При этом .
Продифференцировав по переменной t, получим:
; ;
;
После подстановки получим:
Для оценки скорости продольного перемещения будем пользоваться зависимостью (6). При этом первое уравнение системы уравнений (1) рассматриваем в условиях динамического равновесия (r = const). При интегрировании второго уравнения системы (1) (в зависимости от моделирования сил в направлении ) получаем .
Пусть – вес засыпаемой массы, где и – соответственно количества засыпаемых (моделируемых) материальных точек. Пусть (с целью упрощения) – удельный вес их материала. Тогда вес P можно представить в виде
(7)
где К3 – коэффициент плотности засыпки массы m в объем Vm.
– вытекает из отношения объема, занимаемого каждым из шаров, к соответствующему объему куба, в который он вписан; объем шара равен ; объем куба равен
Если отнести Р к (объему рабочей камеры), то получим так называемый условный удельный вес взвешенных частиц:
. (8)
Очень важно то обстоятельство, что фигурирует соотношение объемов , необходимое для моделирования функциональных зависимостей.
Условное давление:
(9)
Необходимо ввести некоторый эмпирический коэффициент согласования , согласующий реальное давление с моделируемым. Тогда, подставляя (8) в (9), получим:
. (10)
Теперь можно представить явление увлекаемости материальной точки m1 стенками комбинированного винтового ротора силой условного ее выталкивания вверх, отнесенной к площади ее поперечного сечения (m1 - шар, - площадь поперечного сечения). Если еще учесть, что увлекаемая масса будет проскальзывать относительно стенок комбинированного винтового ротора, то эту силу можно представить так:
, (11)
где μ – коэффициент проскальзывания шаров относительно стенок реальной рабочей камеры.
Выражение (11) представляет (как мы убедимся ниже) схематическое моделирование массовых сил, где вводимые коэффициенты должны быть сложными функциями определенной природы. Заметим, что в (11) вместо правильнее было бы считать:
,
где индекс у коэффициента указывает на природу его образования.
Рассмотрим, как формируется модель скольжения между m1 и m2. Например, при [17]
(12)
где N и R – нормальная и тангенциальная составляющие силы трения.
Тогда с учетом вероятности возникновения контактов между телами силу трения можно определить согласно зависимости
(13)
где – сила взаимодействия между массами m1, m2 вдоль направления ; N – сила нормального давления между контактирующими поверхностями и ; – вероятностный коэффициент числа контактов, уточняемый экспериментальным путем.
За момент соприкосновения двух масс совершается работа ; – перемещение достаточно мало, т.е. массы m1, m2 (согласно принятой модели) после нескольких контактирований сохраняют движение по окружности радиуса .
При этом работа обусловливает потерю кинетической энергии [16], равную
,
где , если после каждого контакта m1 и m2 удерживаются на траектории движения.
Рис. 5. Схема контактирования частиц масс загрузки
в радиальном направлении
После введения некоторого эмпирического коэффициента
силу нормального давления N между контактирующими поверхностями и можно определить с помощью зависимости
(14)
Покажем возможность моделирования коэффициента трения скольжения μ в выражении (13). Известна общая форма
, (15)
где
; N – сила взаимодействия; – радиус m2.
В нашем случае коэффициент пропорциональности ψ = 0,9. С учетом этого выражение (15) предстанет в виде [14; 16; 18]
(16)
где коэффициенты достаточно малы.
В математической модели контактных сил трения, сил увлечения массы загрузки стенками комбинированного винтового ротора (эти силы выше мы назвали массовыми) особая роль отводится эмпирическим коэффициентам, которые должны быть установлены из реального соотношения сил (массовых сил), действующих на каждую из обрабатываемых деталей. К этому следует добавить, что условие является достаточно сильным загрублением. Вообще говоря, соотношение коэффициентов при правильном их подборе должно определять соответствие моделируемого процесса условного движения реальному; процесс можно регулировать путем поочередного варьирования одних из них и фиксирования других. Например, если достаточно малы, то это означает пренебрежение массовыми силами. При интегрировании второго уравнения системы (1) мы находимся в условиях
(17)
где выбор постоянной C = C(ω, φ0) может оказаться неудовлетворительным с точки зрения соответствия реальному . Мало того, если при одинаковом захвате массы, т.е. при , непрерывно уменьшать угловую скорость вращения комбинированного винтового ротора ω, то моделируемое условное движение не будет обеспечено с энергетической точки зрения, так как материальная точка m1 так и не достигнет верхнего положения рабочей камеры, т.е. условие не будет обеспечено.
В данном случае это будет уже при , т.е. при снижении количества оборотов. Если при этом добиваться «выполнения энергетики», увеличивая (начальное значение), то при уже будет выполняться (17).
Таким образом, массовые силы необходимо не только учитывать, но и функционально представлять, выделяя, например, фиксированные и варьируя с функциональными зависимостями r, Kв, Kc . Этот процесс достаточно сложен и опирается на ряд экспериментальных характеристик.
Найдем величину проекции (рис. 6). Согласно принятой модели, выталкивающая сила направлена вверх параллельно оси Y и, суммируясь с силой тяжести, дает величину проекции на Y, равную разности сил .
Рис. 6. Схема действия сил на
частицу масс загрузки
Очевидно, что
а если учесть величину силы трения, то
.
С учетом ρ = r = const второе уравнение системы (1) принимает вид
, (18)
где
.
Это уравнение можно переписать с учетом (13), (14), (16), (24) в виде
. (19)
;
;
;
;
.
Обозначим:
В формуле (19) желательно представить разность в виде
(20)
где
.
Здесь .
Исходя из того, что – реальный коэффициент от силы тяжести,
Заметим, что если вероятностный коэффициент будет осреднен, то слагаемое правой части (19) от контактных сил окажется зависимым только от , которая, в свою очередь, входит и в выражение (6).
Представление (20) выбрано не случайно: нужно иметь в виду, что реальная продольная скорость перемещения обрабатываемых деталей мала по сравнению с угловыми скоростями вращения комбинированного винтового ротора, поэтому , т.е. , – должна быть величина достаточно малого порядка, тем более с учетом множителя . С другой стороны, коэффициент увлекания массы можно рассматривать как некоторый условный коэффициент трения, зависящий от геометрии стенок, угловой скорости вращения комбинированного винтового ротора, соотношения объемов материала, сыпучести в спокойном состоянии, размеров частиц – материальных точек, размеров поперечного сечения комбинированного винтового ротора, обработки поверхности и других физико-химических свойств, т.е. достаточно сложной природы. Поэтому с учетом вида (11) есть смысл представить в следующей функциональной форме:
или
, (21)
где – некоторый статический коэффициент трения покоя; – коэффициент трения скольжения (из выражения (11) нетрудно видеть, что при увеличении периметра комбинированного винтового ротора ; в этом случае , т.е. ); ; – вес шара радиуса r; j – его удельный вес.
Параметры предназначены приблизить условный (моделируемый) процесс к реальному. Последние два коэффициента следует рассмотреть особо.
Заметим, что в определенной мере от коэффициентов зависит коэффициент в выражении (19). Этот коэффициент также зависит от геометрии профиля поперечного сечения барабана: порядок коэффициента К2, очевидно, должен соответствовать порядку разности (выше, может быть, еще допускается, а ниже нет, так как нарушается общее требование к порядку скорости продольного перемещения).
Так как предполагаемые порядки слагаемых правой части уравнения (19) достаточно малы (и с учетом загрубления ), при интегрировании (19) положим . Запишем:
(22)
Однако, несмотря на простоту вида, (21) может быть проинтегрировано методом последовательных приближений. В данном случае достаточно остановиться на первом приближении для , полагая в качестве начального (нулевого) приближения. Имеем:
(23)
После вычисления формулы (22)
а после сокращения на dt и интегрирования запишем:
,
где определяется из начальных условий .
Окончательно получим приближенную зависимость для последующего анализа:
(24)
Аналогично имеем ( ):
(25)
Нетрудно видеть, что для дальнейшего исследования зависимостей (24), (25), их интегрирования при заданном диапазоне изменения (интересующем нас диапазоне) подкоренное выражение удобно разлагать в ряд относительно ω2 (возможно, достаточно ограничиться только линейными числами).
Заключение
Технико-экономические преимущества от внедрения нового оборудования обеспечиваются за счет того, что рабочий орган выполнен в виде комбинированного винтового ротора, установленного под острым углом α к оси его вращения и снабженного по внутреннему периметру винтовыми карманами треугольной формы, а по наружному периметру выполненного с чередующимися винтовыми выступами треугольной формы.
Предложенная конструкция позволяет повысить производительность, расширить технологические возможности обработки за счет одновременного воздействия на массы загрузки высокочастотных колебаний с малой амплитудой и низкочастотных колебаний с большой амплитудой, а также нарушения скорости и направления движения масс загрузки при их встрече с карманами треугольной формы, расположенными по винтовым линиям по внутреннему периметру комбинированного винтового ротора.
1. Pat. 2672974 Rossiyskaya Federaciya, MPK V24V 31/023. Ustroystvo dlya otdelochno-uprochnyayuschey obrabotki / V.A. Lebedev, G.V. Serga, I.V. Davydova, S.Yu. Shtyn'; Donskoy gosudarstvennyy tehnicheskiy universitet. ‒ № 2017144229; zayavl. 18.12.17; opubl. 21.11.18, Byul. № 33.
2. Pat. 2519398 Rossiyskaya Federaciya, MPK V24V 31/02. Stanok dlya himiko-otdelochno-uprochnyayuschey obrabotki detaley / G.V. Serga, V.V. Ivanov, V.A. Lebedev; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2013106597/02; zayavl. 14.12.13; opubl. 10.06.14, Byul. № 16.
3. Pat. 2528291 Rossiyskaya Federaciya, MPK V24V 31/02. Ustroystvo dlya otdelochno-uprochnyayuschey obrabotki / G.V. Serga, V.A. Lebedev, V.V. Ivanov; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2013106599/02; zayavl. 14.02.13; opubl. 10.09.14, Byul. № 25.
4. Pat. 2572685 Rossiyskaya Federaciya, MPK V24V 31/02. Ustroystvo dlya otdelochno-zachistnoy obrabotki / A.Yu. Marchenko, A.N. Ivanov, V.A. Lebedev, V.V. Ivanov, G.V. Serga; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2014129160/02; zayavl. 15.07.14; opubl. 20.01.16, Byul. № 2.
5. Pat. 2613517 Rossiyskaya Federaciya, MPK V01F 13/08. Apparat vihrevogo sloya nepreryvnogo deystviya / G.V. Serga, A.A. Kochubey, V.A. Lebedev; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2016110382/02; zayavl. 21.03.16; opubl. 16.03.17, Byul. № 8.
6. Pat. 2614009 Rossiyskaya Federaciya, MPK V01F 13/08. Apparat vihrevogo sloya / G.V. Serga, A.A. Kochubey, V.A. Lebedev; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2015153707; zayavl. 14.12.15; opubl. 22.03.17, Byul. № 9.
7. Pat. 2614013 Rossiyskaya Federaciya, MPK V01F 13/08. Apparat sloya vihrevogo / G.V. Serga, A.A. Kochubey, V.A. Lebedev; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2016110238; zayavl. 21.03.16; opubl. 22.03.17, Byul. № 9.
8. Pat. 2618568 Rossiyskaya Federaciya, MPK V01F 13/08. Apparat trubnyy vihrevogo sloya / G.V. Serga, A.A. Kochubey, V.A. Lebedev; Kubanskiy gosudarstvennyy agrarnyy universitet. ‒ № 2016108190; zayavl. 09.03.16; opubl. 04.05.17, Byul. № 13.
9. Serga, G.V. Vnedrenie ideologii L.N. Koshkina v vibrouprochnyayuschey tehnologii na primere vintovyh rotorov / G.V. Serga, V.A. Lebedev // Vestnik RGTU im. P.A. Solov'eva. – Rybinsk, 2017. – № 2 (41). – S. 126-132.
10. Lebedev, V.A. Increase of efficiency of finishing-cleaning and hardening processing of details based on rotor-screw technological systems / V.A. Lebedev, G.V. Serga, A.V. Khandozhko // IOP Conf. Series: Materials Science and Engineering. – 2018. - № 327. - 042062.
11. Lebedev, V.A. Method for calculating the power of a rotor-screw machines / V.A. Lebedev, G.V. Serga, I.V. Davydova, T.V. Atoyan, I.G. Koshlyakova, A.V. Gordienko // MATEC Web Conf. - 226 (2018) 01007.
12. Lebedev, V.A. Main trends in intensification of rotorscrew processing of parts / V.A. Lebedev, G.V. Serga, I.V. Davydova, T.V. Atoyan, I.G. Koshlyakova, A.V. Gordienko // MATEC Web Conf. - 226 (2018) 01008.
13. Yavorskiy, B.M. Spravochnik po fizike / B.M. Yavorskiy, A.A. Detlaf. ‒ M.: Nauka, 1965. - S. 38.
14. Smirnov, V.I. Kurs vysshey matematiki / V.I. Smirnov. ‒ M.: Nauka, 1961. - T. 3. - Ch. 2. - S. 641-643.
15. Ventcel', E.S. Teoriya veroyatnostey / E.S. Ventcel'. ‒ M.: Nauka, 1964. ‒ 135 s.
16. Enciklopedicheskiy spravochnik. Mashinostroenie. Inzhenernye raschety v mashinostroenii. - M.: GNTIML, 1947. – T. 1. – Kn. 2. – 456 s.
17. Fedorchenko, A.M. Teoreticheskaya fizika / A.M. Fedorchenko. – Kiev: Vyssh. shk., 1983. - 231 s.
18. Serga, G.V. Parametricheskie issledovaniya kinetiki iznosa kulachkov: avtoref. dis. … kand. tehn. nauk / G.V. Serga. - L'vov, 1971.