Current velocity - is symmetric derivative average random process introduced by E. Nelson. It is a natural analogue of the usual physical speed deterministic curve. If given the current velocity and the so-called derivative quadratic average (giving information on the diffusion coefficient of the process) , then under certain conditions it is possible to construct a process having a predetermined current velocity and quadratic derivative. In this review article describes the case where the set -valued current velocity and quadratic derivative , equation reduces to the inclusion.
Mean derivatives, stochastic differential inclusions whith current velocity
1. Gliklikh Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics / Yu.E. Gliklikh.- London: Springer-Verlag, 2011.- 460 p
2. Gliklikh Yu.E., Makarova A.V. On solvability of stochastic differential inclusions with current velocities. Applicable Analysis.- 2011.- DOI: 10.1080/00036811.2011.579565
3. Azarina S.V., Gliklikh Yu.E. Differential inclusions with mean derivatives.Dynamic Systems and Applications.- 2007.- Vol. 16, No. 1.- P. 49–72
4. Nelson E. Quantum fluctuations.- Princeton: Princeton University Press, 1985.-147r.
5. Makarova A.V. On solvability of stochastic differential inclusions wuth current velocities. II / A.V. Makarova. Global and Stochastic Analysis.- 2012.- Vol.2.- No. 1.- P. 101-112.
6. Gliklikh Yu.E., Makarova A.V. Belgorod State University Scientific bulletin Mathematics. Physics.-2012.No.17(136).ISSU 28.-P. 5-16
7. I.I Gihman and A.V. Skorohod, Theory of Stochastic Processes, Vol. 1, Springer-Verlag New York, 1974.
8. I.I. Gihman and A.V. Skorohod, Theory of Stochastic Processes, Vol. 3, Springer-Verlag New York, 1979