VAC 05.13.01 Системный анализ, управление и обработка информации (по отраслям)
VAC 05.13.06 Автоматизация и управление технологическими процессами и производствами (по отраслям)
VAC 05.13.10 Управление в социальных и экономических системах
VAC 05.13.18 Математическое моделирование, численные методы и комплексы программ
VAC 05.13.19 Методы и системы защиты информации, информационная безопасность
UDK 519.23
GRNTI 20.01 Общие вопросы информатики
GRNTI 28.01 Общие вопросы кибернетики
GRNTI 49.01 Общие вопросы связи
GRNTI 50.01 Общие вопросы автоматики и вычислительной техники
GRNTI 82.01 Общие вопросы организации и управления
The concept of structure is used to describe a set of stable relations between the main parts of the object, which describe its integrity and identity, i.e, preserving the basic properties for a wide range of internal and external changes. This concept usually relates to the concepts of system and organization. The structure expresses a stable part of the system that is slightly changed during different reforms. Over the years structural changes take place because of active economic policy or as a result of spontaneous, uncontrollable processes. Therefore, it seems to be quite natural to find out whether there have been structural changes in the observation period, and to find them reflected in the specification of the model. The basic ideas of methods for determining structural changes in the time series dynamics have been considered, such as Chow test, Gujarati test and Poirier method. The power study was conducted for the three possible cases of change in time series trends. The random error was modeled according to the standard normal distribution. A linear multiple regression model with three independent variables was used as a time series model. Estimation of the vector of unknown parameters of the model was conducted using least squares method. For each of the three criteria the of test the null hypothesis about time series instability was carried out using the F -criterion, which involves finding the residual sum of squares of a regression model and analysis of correlation between its decline and the loss of degrees of freedom. It can be noted that Gujarati and Poirier equations have a more complex structure than equation of Chow test; however, using Chow test assumes estimation of the parameters of the three regression equations.
time series, trend, structural changes, Chow test, Gujarati test, Poirier method, power of test, piecewise model, Fisher test, spline
1. Timofeev V. S., Faddeenkov A. V., Schekoldin V. Yu. Ekonometrika. Novosibirsk: Izd-vo NGTU, 2013. C. 163-170.
2. Ayvazyan S. A., Mhitaryan V. S. Prikladnaya statistika i osnovy ekonometriki. M.: Yuniti, 2001. T. 2. 432 s.
3. Babeshko L. O. Osnovy ekonometricheskogo modelirovaniya. M.: KomKniga, 2006. 432 s.
4. Green W. H. Econometric analysis: 6th ed. Prentice Hall, 2007. 1216 p.
5. Gujarati D. N. Basic econometrics: 3rd ed. McGraw-Hill, 1995. 1003 p.
6. Denisov V. I., Faddeenkov A. V. Spline regression with variable penalty coefficients // Optoelectronics, Instrumentation and Data Processing. 2015. V. 51. Iss. 3. P. 213-219.
7. Faddeenkov A. V. Ocenivanie parametrov regressionnyh modeley v usloviyah geteroskedastichnosti neizvestnoy formy // Nauch. vestn. Novosib. gos. tehn. un-ta. 2014. № 2 (55). S. 67-76.
8. Denisov V. I., Timofeev V. S., Faddeenkov A. V. Issledovanie algoritmov vybora optimal'nyh koordinat uzlovyh tochek v poluparametricheskih modelyah shtrafnyh splaynov // Nauch. vestn. Novosib. gos. tehn. un-ta. 2013. № 2. S. 35-44.
9. Horowitz J. L. Semiparametric and Nonparametric Methods in Econometrics. New York: Springer, 2009. 286 p.
10. Ichimura H., Todd P. E. Implementing nonparametric and semiparametric estimators. Handbook of Econometrics. Elsevier Science. 2007. V. 6. Part B. P. 5369-5468.
11. Ruppert D., Wand M. P., Carroll R. J. Semiparametric Regression. New York: Cambridge university press, 2003. 404 p.
12. Denisov V. I., Timofeev V. S., Buzmakova O. I. Shtrafnye splayny v zadache identifikacii poluparametricheskoy regressii // Nauch. vestn. Novosib. gos. tehn. un-ta. 2011. № 4 (45). S. 11-24.
13. Puar'e D. Ekonometriya strukturnyh izmeneniy (s primeneniem splayn-funkciy). M.: Finansy i statistika, 1981. 183 s.
14. Lemeshko B. Yu., Lemeshko S. B. i dr. Statisticheskiy analiz dannyh, modelirovanie i issledovanie veroyatnostnyh zakonomernostey. Komp'yuternyy podhod. Novosibirsk: Izd-vo NGTU, 2011. 560 c.
15. Lemeshko B. Yu., Veretel'nikova I. V. Moschnost' k-vyborochnyh kriteriev proverki odnorodnosti // Izmeritel'naya tehnika. 2018. № 7. S. 3-7.
16. Lemeshko B. Yu., Novikova A. Yu. O kriteriyah Millera i Layarda i moschnosti kriteriev odnorodnosti dispersiy // Obrabotka informacii i matematicheskoe modelirovanie: materialy Ros. nauch.-tehn. konf. (Novosibirsk, 26-27 aprelya 2018 g.). Novosibirsk: Izd-vo SibGUTI, 2018. S. 60-69.
17. Lemeshko B. Yu., Sataeva T. S. Primenenie i moschnost' parametricheskih kriteriev proverki odnorodnosti dispersiy. Ch. 3 // Izmeritel'naya tehnika. 2017. № 1. S. 8-13.
18. Lemeshko B. Yu., Sataeva T. S. Primenenie i moschnost' parametricheskih kriteriev proverki odnorodnosti dispersiy. Ch. 4 // Izmeritel'naya tehnika. 2017. № 5. S. 12-17.
19. Lemeshko B. Yu., Blinov P. Yu. Sravnitel'nyy analiz kriteriev proverki gipotezy o ravnomernosti zakona // Izmeritel'naya tehnika. 2016. № 10. S. 9-15.