Moscow, Russian Federation
Astrakhan, Russian Federation
VAC 05.13.01 Системный анализ, управление и обработка информации (по отраслям)
VAC 05.13.06 Автоматизация и управление технологическими процессами и производствами (по отраслям)
VAC 05.13.10 Управление в социальных и экономических системах
VAC 05.13.18 Математическое моделирование, численные методы и комплексы программ
VAC 05.13.19 Методы и системы защиты информации, информационная безопасность
UDK 004.8
GRNTI 20.01 Общие вопросы информатики
GRNTI 28.01 Общие вопросы кибернетики
GRNTI 49.01 Общие вопросы связи
GRNTI 50.01 Общие вопросы автоматики и вычислительной техники
GRNTI 82.01 Общие вопросы организации и управления
The article discusses the process of planning the repair of energy equipment. Using a decision support system is proposed because of the large number of rules of comparing flow charts of technical defects. Such a system can speed up the planning process and reduce economic costs. A conceptual model of the system has been built; further it will be presented as a multi-label classification of cross-cutting classes. The “one-vs-all” approach has been used: each flow chart can use its individual classifier. Metrics are proposed for evaluating classifiers: a portion of accurately classified objects, precision, fullness and F-measure. To summarize the evaluation results the concept of micro-average was chosen. A defect classification algorithm has been described. An experiment was conducted using different classification algorithms: decision trees, Bayes classifier and multilayer perceptron. The results of the experiment proved that 80-90% of the correctly classified objects were found (high values), but the average values of accuracy and fullness occurred low (3-7%). There were found sets of data, where different output data corresponded to similar input data. Thus, machine learning can be used to support decision-making, but in some cases information about the order is not complete. Defect classification can be combined with manual clarifying of results or with different algorithms.
decision support system, asset management system, flow charts, defects, equipment, repair program, classifier
1. Protalinskiy O. M., Protalinskiy I. O., Kladov O. N. Sistema optimal'nogo upravleniya proizvodstvennymi aktivami energeticheskih predpriyatiy // Avtomatizaciya i IT v energetike. 2017. № 4 (93). S. 5-8.
2. Yaschura A. I. Sistema tehnicheskogo obsluzhivaniya i remonta energeticheskogo oborudovaniya: sprav. M.: NC ENAS, 2006. 491 s.
3. Metodicheskie ukazaniya po razrabotke tehnologicheskih kart i proektov proizvodstva rabot po tehnicheskomu obsluzhivaniyu i remontu VL // PAO «FSK EES». URL: http://www.fsk-ees.ru/upload/docs/ STO_56947007-29.240.55.168-2014.pdf (data obrascheniya: 30.04.2019).
4. Shurshev V. F., Kochkin G. A., Kochkina V. R. Model' sistemy podderzhki prinyatiya resheniy na osnove rassuzhdeniy po precedentam // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Upravlenie, vychislitel'naya tehnika i informatika. 2013. № 2. S. 175-183.
5. Zvezincev A. I., Kvyatkovskaya I. Yu. Primenenie modificirovannogo algoritma geneticheskogo programmirovaniya dlya identifikacii matematicheskih modeley putem rasshireniya obuchayuschego mnozhestva iskusstvennoy neyronnoy set'yu // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Upravlenie, vychislitel'naya tehnika i informatika. 2013. № 2. S. 58-65.
6. Orehova T. P., Kvyatkovskaya I. Yu. Funkcional'naya podsistema upravleniya osnovnymi sredstvami ASUP energosetevoy kompanii // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Upravlenie, vychislitel'naya tehnika i informatika. 2012. № 1. S. 49-55.
7. Protalinskiy O. M., Hanova A. A., Scherbatov I. A., Protalinskiy I. O., Kladov O. N., Urazaliev N. S., Stepanov P. V. Ontologiya processa upravleniya remontami v elektrosetevoy kompanii // Vestn. Mosk. energet. in-ta. 2018. № 6. S. 110-119.
8. Byaleckaya E. M., Kvyatkovskaya I. Yu. O principah kognitivnogo modelirovaniya slozhnyh sistem // Vestn. Astrahan. gos. tehn. un-ta. 2006. № 1 (30). S. 116-119.
9. Shurshev V. F., Demich N. V. Issledovanie algoritma kompleksnogo evolyucionnogo metoda, primenyaemogo v komp'yuternoy sisteme podderzhki prinyatiya resheniya o vybore sostava holodil'nyh agentov, s pomosch'yu vychislitel'nyh eksperimentov // Vestn. Astrahan. gos. tehn. un-ta. 2006. № 1 (30). S. 141-146.
10. Protalinskiy O. M., Protalinskaya Yu. O., Protalinskiy I. O., Scherbatov I. A., Kladov O. N. Sistema upravleniya proizvodstvennymi aktivami predpriyatiy energetiki EAMOptima // Avtomatizaciya i IT v energetike. 2018. № 9 (110). S. 24-26.
11. Lisin I. Yu., Korolenok A. M., Kolotilov Yu. V., Karlina E. P., Shurshev V. F. Sistemnyy analiz informacionnyh potokov tehnicheskoy dokumentacii dlya podderzhki resheniy pri planirovanii remontnyh rabot // Territoriya Neftegaz. 2018. № 11. S. 12-17.
12. Shurshev V. F., Demich O. V. Ispol'zovanie metoda samoorganizacii poiska v zadache podderzhki prinyatiya resheniya pri opredelenii komponentov sistemy energoucheta // Vestn. Kuzbas. gos. tehn. un-ta. 2005. № 5. S. 25-27.
13. Kvyatkovskaya I. Yu. Etapy problemno-orientirovannoy metodologii podderzhki prinyatiya upravlencheskih resheniy dlya slabostrukturirovannyh problem // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Upravlenie, vychislitel'naya tehnika i informatika. 2009. № 1. S. 60-65.
14. Shadlov D. V., Galimova L. V., Homenko T. V., Shurshev V. F. Formalizaciya algoritma prinyatiya resheniy pri opredelenii ocherednosti proizvodstva remontnyh rabot // Remont. Vosstanovlenie. Modernizaciya. 2018. № 4. S. 36-39.
15. Umerov A. N., Shurshev V. F. Metody i programmnye sredstva approksimacii eksperimental'nyh dannyh // Vestn. Astrahan. gos. tehn. un-ta. 2005. № 1. S. 97-104.
16. Multi Label Text Classification with Scikit-Learn // Towards Data Science. URL: https:// towardsdatascience.com/multi-label-text-classification-with-scikit-learn-30714b7819c5 (data obrascheniya: 30.04.2019).
17. Segaran T. Programmiruem kollektivnyy razum. SPb.: Simvol-Plyus, 2008. 368 s.
18. Hackeling G. Mastering Machine Learning with scikit-learn. Packt Publishing Ltd, 2014. 238 p.
19. Rassel C., Norvig P. Iskusstvennyy intellekt: sovremennyy podhod: 2 izd. M.: OOO «I. D. Vil'yams», 2016. 1408 s.
20. Kruglov V. V., Dli M. I., Golunov R. Yu. Nechetkaya logika i iskusstvennye neyronnye seti. M.: Fizmatlit, 2001. 201 s.