graduate student
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
student
Ekaterinburg, Ekaterinburg, Russian Federation
student
Moskva, Moscow, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
Importance. Fractures of the orbital walls in structure of craniofacial traumatic injures occupy a special place and occur in more than 40 %. The complexity of the structure, the proximity of the vision organ location causes difficulties in diagnostics and treatment of these patients. Often surgical treatment is carried out with using of standard implants that must be manually and directly modeled during the surgical intervention. Such numerous manipulations with implant develop negative effect on strength, that reduces predictability of the results and causes various postoperative complications in 20 % of cases. The goal — is to conduct a systematic analysis of domestic and foreign literary sources to determine development prospects, improve diagnostic methods and treat orbital fractures. Methodology. A case-control or cohort study was reviewed with a very low risk of mixing effects and average probability of causal relationship. Conclusions. Surgical treatment of fractures of the facial middle zone, the orbital walls is a difficult task for surgeons. The great number of reconstructive materials and implants on the market provide a wide range of choices depending on the preferences of the surgeon and patient, that’s based on the specific clinical situation. However determining the ideal material for reconstructing of orbital walls is still an open question. Results. Digital and additive technologies have great perspectives in diagnostic and treatment of trauma of the face middle zone. However a number of tasks requires to introduce and adapt rapid prototyping technologies in practical healthcare, which will allow significant progress in the diagnostics and treatment of facial skeleton fractures.
orbital fractures, craniofacial surgery, additive technologies, diagnostics, treatment
1. Abdulkerimov, T. Kh., Mandra, J. V., Gerasimenco, V. I., Tzeh, D. V., Samatov, N. R., Mandra, E. V., Ghegalina, N. M., Sorokoumova, D. V. (2019). Epidemiologiya perelomov stenok orbit. Retrospektivnoye issledovaniye [Epidemiology of the orbital fractures. Retrospective study]. Problemy stomatologii [Problems of dentistry], 15, 2, 46–49. (In Russ.)
2. Votyakov, S. L., Mandra, J. V., Kiseleva, D. V., Grigorjev, S. S., Ron, G. I., Panfilov, P. E., Zaytsev, D. V., Ivashov, A. S., Saypeev, K. A., Abdulina, J. N. (2017). Mineralogicheskaya stomatologiya kak mezhdistsiplinarnaya oblast' issledovaniy: nekotoryye itogi i perspektivy razvitiya [Mineralogical dentistry as an interdisciplinary research field: recent results and development prospects]. Problemy stomatologii [Problems of dentistry], 13, 1, 3–17. (In Russ.)
3. Gholudev, S. E., Nersesyan, P. M. (2017). Sovremennyye znaniya i klinicheskiye perspektivy ispol'zovaniya dlya pozitsionirovaniya dental'nykh implantatov khirurgicheskikh shablonov. Obzor literatury [Modern knowledge and clinical perspectives of use for positioning dental implants of surgical templates. Literature Review]. Problemy stomatologii [Problems of dentistry], 13, 42, 74–80. (In Russ.)
4. Eds. Kulakov, A. A., Robustova, T. G., Nerobeeva, A. I. (2010). Khirurgicheskaya stomatologiya i chelyustno-litsevaya khirurgiya : natsional'noye rukovodstvo [Surgical dentistry and maxillofacial surgtry : national guideline]. Moscow : GEOTAR-Media, 928. (In Russ.)
5. Brennan, P., Schliephake, H., Ghali, G. E., Cascarini, L. (2017). Maxillofacial surgery. 3-rd ed., St. Louis : Elsevier, 1562.
6. Ehrenfeld, M., Manson, P., Prein, J. (2012). Principles of internal fixation of the Craniomaxillofacial skeleton. Trauma and orthognathic surgery. Zurich : Thieme, 395.
7. Al-Moraissi, E. et al. (2018). What surgical approach has the lowest rick of the lower lid complications in the treatment of orbital floor and periorbital fractures? A frequentist network meta-analysis. Journal of CranioMaxillo-Facial Surgery, 46, 2164–2175.
8. Bae, S. H., Jeong, D. K., Go, J. Y., Park, H., Kim, J. H., Lee, J. W., Kang, T. (2019). A novel technique for placing titanium mesh with porous polyethylene via the endoscopic transnasal approach into the orbit for medial orbital wall fractures. Arch Plast Surg, 46 (5), 421–425. doi: 10.5999/aps.2019.00703.
9. Baino, F. (2011). Biomaterials and implants for orbital floor repair. Acta Biomaterialia, 7, 3248–3266.
10. Caranci, F. et al. (2012). Orbital Fractures: Role of Imaging. Seminars in Ultrasound, CT and MRI, 33, 5, 385–391.
11. Chuang, K. T., Hsieh, F., Liao, H. T. (2019). The Correlation of Age and Patterns of Maxillofacial Bone Fractures and Severity of Associated Injuries Caused by Motorcycle Accidents. Ann Plast Surg, 25. doi: 10.1097/SAP.0000000000001943.
12. Cohn, J. E., Smith, K. C., Licata, J. J., Michael, A., Zwillenberg, S., Burroughs, T., Arosarena, O. A. (2019). Comparing Urban Maxillofacial Trauma Patterns to the National Trauma Data Bank©. Ann Otol Rhinol Laryngol, 27. doi: 10.1177/0003489419878457.
13. Evans, B. T., Webb, A. A. C. (2007). Post-traumatic orbital reconstruction: Anatomical landmarks and the concept of the deep orbit. British Journal of Oral and Maxillofacial Surgery, 45, 183–189.
14. Ferreira, M. C., Batista, A. M., Ferreira, F. de O., Ramos-Jorge, M. L., Marques, L. S. (2014). Pattern of oral-maxillofacial trauma stemming from interpersonal physical violence and determinant factors. Dent Traumatol, 30 (1), 15–21. doi: 10.1111/edt.12047.
15. Fialkov, J. A. et al. (2001). Postoperative infections in craniofacial reconstructive procedures. Journal of Craniofacial Surgery, 12, 362–368.
16. Gassner, R., Tuli, T., Hächl, O., Rudisch, A., Ulmer, H. (2003). Cranio-maxillofacial trauma: a 10 year review of 9,543 cases with 21,067 injuries. J Craniomaxillofac Surg, 31 (1), 51–61.
17. Halsey, J. N., Hoppe, I. C., Granick, M. S., Lee, E. S. (2017). A Single-Center Review of Radiologically Diagnosed Maxillofacial Fractures: Etiology and Distribution. Craniomaxillofac Trauma Reconstr, 10 (1), 44–47. doi: 10.1055/s-0036-1597582
18. Klisovic, D. D. et al. (2002). The wayward implant: orbital silicone plate extrusion associated with squamous epithelial downgrowth and infection. Orbit, 21, 149–154.
19. Laxenaire, A. et al. (1997). Complications of silastic implants used in orbital repair. Revue de Stomatologie, de Chirurgie Maxillo-faciale et de Chirurgie Orale, 98, 96–99.
20. Liao, H. F., Yu, J. H., Hu, C. Q., Hu, X. Y., Liu, Q., Wang, Y. H., Wang, A. A., Xu, Q.H. (2019). Application of three-dimensional printing combined with surgical navigation and endoscopy in orbital fracture reconstruction. Zhonghua Yan Ke Za Zhi, 11, 55 (9), 658–664. doi: 10.3760/cma.j.issn.0412-4081.2019.09.006.
21. McCormick, R. S., Putham, G. (2018). The management of facial trauma. Head and neck surgery, 36, 10, 587–594.
22. Sanjuan-Sanjuan, A., Heredero-Jung, S., Ogledzki, M., Arévalo-Arévalo, R., Dean-Ferrer, A. (2019). Flattening of the orbital lower eyelid fat as a long-term outcome after surgical treatment of orbital floor fractures. J Oral Maxillofac Surg, 16. doi: 10.1016/j.bjoms.2019.07.023.
23. Schmidt, B. L. et al. (1998). Infraorbital squamous epithelial cyst: an unusual complication of silastic implantation. Journal of Craniofacial Surgery, 9, 452–455.
24. Weadock, W. J., Heisel, C. J., Kahana, A., Kim, J. (2019). Use of 3D Printed Models to Create Molds for Shaping Implants for Surgical Repair of Orbital Fractures. Acad Radiol, 27. doi: 10.1016/j.acra.2019.06.023.
25. Ying Pang, S. S. et al. (2018). Application of three-dimensional printing technology in orbital floor fracture reconstruction. Trauma Case Reports, 17, 23–28.