Moskva, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
Logachev catalog data for solar cycle 23 has been used to study the dependence of measured increases in solar cosmic rays (SCRs) on solar perturbations. The efficiency of recording the SCR increases, driven by proton acceleration in the corona, on Earth and in its vicinity is shown to depend on power of a solar flare that created a shock wave and on position of the flare on the solar disk. As the particle flux moves along the heliolongitude away from the parent flare, the acceleration efficiency decreases, i.e. the maximum energy of the accelerated particles and their intensity at equal energy decrease. As a result, at a certain distance along a heliolongitude from the parent solar flare, the solar proton flux intensity decreases to the galactic background, and there is no SCR increase detected.
solar cosmic rays, solar flare intensity, heliolongitude
1. Axford W.I., Leer E., Skadron G. The acceleration of cosmic rays by shock waves. 15th Intern. Cosmic Ray Conf., Plovdiv, Bulgaria. 1977, vol. 11, pp. 132–137.
2. Bazilevskaya G.A., Logachev Y.I., Daibog E.I., Lazutin L.L., Miroshnichenko L.I., Surova G.M., Yakovchouk O.S., Vashenyuk E.V., Ishkov V.N., Nazarova M.N., Petrenko I.E. Solar proton events in solar activity cycles 21–24. Bulletin of the Russian Academy of Sciences: Physics. 2015, vol. 79, no. 5, pp. 573–576. DOI: 10.3103/S1062873815050135.
3. Berezhko E.G., Elshin V.K., Krymskii G.F., Petukhov S.N. Generatsiya kosmicheskikh luchei udarnymi volnami [The generation of cosmic rays in shock waves]. Novosibirsk, Nauka Publ., 1988, 189 p. (In Russian).
4. Berezhko E.G., Taneev S.N. Shock acceleration of solar cosmic rays. Astron. Lett. 2013, vol. 39, no. 6, pp. 393–403. DOI: 10.1134/S1063773713060017.
5. Desai M., Giacalone J. Large gradual solar energetic particle events. Living Rev. Solar Phys. 2016, vol. 13, 3. DOI: 10.1007/s41116-016-0002-5.
6. Ellison D.C., Ramaty R. Shock acceleration of electrons and ions in solar flares. Astrophys. J. 1985, vol. 298, pp. 400–408.
7. Krymskii G.F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Soviet Phys. Dokl. 1977, vol. 22, pp. 327–328.
8. Kudela K., Lazutin L. Selected solar influences on the magnetosphere: Information from cosmic rays. The Sun, the Solar Wind, and the Heliosphere. Proceedings of the conference held 23–30 August, 2009 in Sopron, Hungary. Berlin, Springer, 2011, pp. 199–207. (IAGA Special Sopron Book Series, vol. 4.). DOI: 10.1007/978-90-481-9787-3_18.
9. Kurt V., Belov A., Kudela K., Mavromichalaki H., Kashapova L., Yushkov B., Sgouropoulos C. Onset time of the GLE 72 observed at neutron monitors and its relation to electromagnetic emissions. Solar Phys. 2019, vol. 294, no. 2, 22. DOI: 10.1007/s11207-019-1407-9.
10. Logachev Y.I., Bazilevskaya G.A., Vashenyuk E.V., Daibog E.I., Ishkov V.N., Lazutin L.L., Miroshnichenko L.I., Nazarova M.N., Petrenko I.E., Stupishin A.G., Surova G.M., Yakovchouk O.S. Catalogues of solar proton events and their sources in solar cycles 20–23. Kosmicheskie luchi i solnechnaya aktivnost’ [Cosmic Rays and Solar Activity]. Moscow, Russian Academy of Natural History, International Academy of Appraisal and Consulting, 2014, pp. 155–175. (Ser. «Cosmic Rays», vol. 29). (In Russian).
11. Logachev Yu.I., Bazilevskaya G.A., Vashenyuk E.V., Daibog E.I., Ishkov V.N., Lazutin L.L., Miroshnichenko L.I., Nazarova M.N., Petrenko I.E., Stupishin A.G., Surova G.M., Yakovchuk O.S. Catalogue of solar proton events of 1997–2009. Edited by Yu.I. Logachev. 2014. http://www.wdcb.ru/stp/stp.ru/catCDR_r (accessed July 15, 2020).
12. Logachev Y.I., Daibog E.I., Lazutin L.L., Miroshnichenko L.I., Surova G.M., Yakovchouk O.S., Bazilevskaya G.A., Vashenyuk E.V., Ishkov V.N., Nazarova M.N., Petrenko I.E., Stupishin A.G. A comparison of proton activity in cycles 20–23. Geomagnetism and Aeronomy. 2015, vol. 55, no. 3, pp. 277–286. DOI: 10.1134/S0016793215030135.
13. Maksimov V.P., Bakunina V.P., Bakunina I.A., Nefedyev V.P., Smolkov G.Ya. Method of short-term forecast of powerful solar flares. Patent RU 2114449 C1. 1996. https://yandex.ru/patents/doc/RU2114449C1_19980627 (accessed July 15, 2020).
14. Miroshnichenko L.I. Solar cosmic rays: 75 years of research. Physics-Uspekhi. 2018, vol. 61, no. 4, pp. 323–352. DOI: 10.3367/UFNe.2017.03.038091.
15. Reames D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 1999, vol. 90, pp. 413–491.
16. Reames D.V. The two sources of solar energetic particles. Space Sci. Rev. 2013, vol. 175, iss. 1-4, pp. 53–92. DOI: 10.1007/s11214-013-9958-9.
17. Shabansky V. P. Particle acceleration by passage of a hydromagnetic wave front. Zhurnal eksperimental’noi i teoreticheskoi fiziki [JETP]. 1961, vol. 41, no. 4, pp. 1107–1111. (In Russian). (English edition: Shabanskii V.P. Particle acceleration by passage of a hydromagnetic wave front. JETP. 1962, vol. 14, no. 4, pp. 791–793.)