Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
Irkutsk State University
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
The article discusses characteristics, fundamental and applied tasks of the Siberian Radioheliograph that is developed at the ISTP SB RAS Radio Astrophysical Observatory and spectropolarimetric complex that measures the total flux of solar radio emission. The multi-wave mapping of the Sun in the microwave range is a powerful and relatively inexpensive, in comparison with space technologies, means of observing solar activity processes and diagnosing plasma parameters. All-weather monitoring of electromagnetic solar emission (in the range from meter to millimeter waves, including measurements of the solar activity index at 2.8 GHz), and at the location of other diverse diagnostic facilities of the Heliogeophysical Complex, is of particular value. Radioheliograph data is necessary to develop and implement methods of short-term forecast of solar flares, measurements of kinematics and characteristics of coronal mass ejection plasma, forecast of characteristics of fast solar wind streams.
radioheliograph, Sun, magnetic fields, monitoring, particle acceleration
1. Abramov-Maksimov V.E., Borovik V.N., Opeikina L.V., Tlatov A.G. Peculiarities in evolution of solar active regions before powerful X class flares: analysis of RATAN-600 and SDO space observatory data. Kosmicheskie issledovaniya [Cosmic Res.]. 2014, vol. 52, iss. 1, p. 3. DOI: 10.7868/ S0023420614010014. (In Russian).
2. Afraimovich E.L., Altyntsev A.T., Kosogorov E.A., Larina N.S., Leonovich, L.A. Ionospheric effects of the solar flares of September 23, 1998 and July 29, 1999 as deduced from global GPS network data. J. Atmos. Solar-Terr. Phys. 2001. vol. 63, iss. 17, pp. 1841–1849. DOI: 10.1016/S1364-6826(01)00060-8.
3. Akhmedov Sh.B., Gelfreikh G.B., Bogod V.M., Korzhavin A.N. The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission. Solar Phys. 1982, vol. 79, iss. 1, pp. 41–58. DOI: 10.1007/BF00146972.
4. Altyntsev A.T., Grechnev V.V., Konovalov S.K., Lesovoi S.V., Lisysian, E.G., Treskov T.A., et al. On the apparent size of solar microwave spike sources. Astrophys. J. 1996, vol. 469, p. 976. DOI: 10.1086/177844.
5. Altyntsev A.A., Fleishman G.D., Lesovoi S.V., Meshalkina N.S. Thermal to nonthermal energy partition at the early rise phase of solar flares. Astrophys. J. 2012, vol. 758, iss. 2, article id. 138, 12 p. DOI: 10.1088/0004-637X/758/2/138.
6. Bala B., Lanzerotti L.J., Gary D.E., Thomson D.J. Noise in wireless systems produced by solar radio bursts. Radio Sci. 2002, vol. 37, p. 1018. DOI: 10.1029/2001RS002481.
7. Bastian T.S. Angular scattering of solar radio emission by coronal turbulence. Astrophys. J. 1994, vol. 426, no. 2, pp. 774–781. DOI: 10.1086/174114.
8. Benz A.O., Monstein C., Meyer H., Manoharan, P.K., Ramesh R., Altyntsev A., et al. A world-wide net of solar radio spectrometers: e-Callisto. Earth, Moon, and Planets. 2009, vol. 104, iss. 1-4, pp. 277–285. DOI: 10.1007/s11038-008-9267-6.
9. Cerruti A.P., Kintner P.M., Gary D.E., Lanzerotti L.J., de Paula E.R., Vo H.B., et al. Observed solar radio burst effects on GPS/wide area augmentation system carrier-to-noise ratio. Space Weather. 2006, vol. 4, iss. 10, CiteID S10006. DOI: 10.1029/ 2006SW000254.
10. Chashei I.V., Shishov V.I., Altyntsev A.T. Apparent angular sizes of the sources of microwave subsecond pulses and electron-density fluctuations in the lower solar corona. Astron. Rep. 2006, vol. 50, iss. 3, pp. 249–254. DOI: 10.1134/S1063772906030085.
11. Chernov G.P. Solar radio bursts with drifting stripes in emission and absorption. Space Sci. Rev. 2006, vol. 127, iss.1-4, pp. 195–326. DOI: 10.1007/s11214-006-9141-7.
12. Chertok I.M., Abunina M.A., Abunin A.A., Belov A.V., Grechnev V.V. Relationship between the magnetic flux of solar eruptions and the Ap index of geomagnetic storms. Solar Phys. 2015, vol. 290, iss. 2, pp. 627–633. DOI: 10.1007/s11207-014-0618-3.
13. Domingo V., Fleck B., Poland A.I. The SOHO mission: An overview. Solar Phys. 1995, vol. 162, iss. 1-2, pp. 1–37. DOI: 10.1007/BF00733425.
14. de Pontieu B., Title A.M., Lemen J.R., Kushner G.D., Akin D.J., Allard B., et al. The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 2014, vol. 289, iss.7, pp. 2733–2779. DOI: 10.1007/s11207-014-0485-y.
15. Fedotova A.Yu., Altyntsev A.T., Kochanov A.A., Lesovoi S.V., Meshalkina N.S. Observation of eruptive events with the Siberian Radioheliograph. Solar-Terr. Phys. 2018, vol. 4, iss. 3, pp. 13–19. DOI: 10.12737/stp-43201802.
16. Fleishman G.D., Melnikov V.F. Solar millisecond radio spikes. Uspekhi fizicheskikh nauk [Physics–Uspekhi (Advabces in Physical Sciences)]. 1998, vol. 168, iss. 12, pp. 1265–1301. DOI: 10.3367/UFNr.0168.199812a.1265. (In Russian).
17. Fleishman G.D., Kuznetsov A.A. Fast gyrosynchrotron codes. Astrophys. J. 2010, vol. 721, iss. 2, pp. 1127–1141. DOI: 10.1088/0004-637X/721/2/1127.
18. Fleishman G.D., Nita G.M., Kuroda N., Jia S., Tong K., Wen R.R., Zhizhuo Z. Revealing the evolution of non-thermal electrons in solar flares using 3D modeling. Astrophys. J. 2018, vol. 859, iss. 1, article id. 17, 14 p. DOI: 10.3847/1538-4357/aabae9.
19. Fleishman G., Bastian T.S., Chen Bin, Gary D.E., Gle-sener L., Nita G., et al. Solar coronal magnetic fields: quantitative measurements at radio wavelengths. Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 426. Bull. American Astron. Soc. 2019, vol. 51, iss. 3, id. 426.
20. Fox N.J., Velli M.C., Bale S.D., Decker R., Driesman A., Howard R.A., et al. The Solar Probe Plus Mission: Humanity's first visit to our star. Space Sci. Rev. 2016, vol. 204, iss. 1-4, pp. 7–48. DOI: 10.1007/s11214-015-0211-6.
21. Gary D.E., Bastian T.S., White S.M., Hurford G.J. The Frequency-Agile Solar Radiotelescope (FASR). Proc. Asia-Pacific Radio Science Conference AP-RASC '01. Chuo University, Tokyo, Japan, 1–4 August, 2001, p. 236.
22. Gary D.E., Bastian T.S., Chen B., Fleishman G.D., Glesener L. Radio observations of solar flares. Science with a Next Generation Very Large Array. ASP Conf. Ser. 2018a, vol. 517, p. 99.
23. Gary D.E., Bin Chen, Dennis B.R., Fleishman G.D., Hurford G.J., Krucker S., et al. Microwave and hard X-ray observations of the 2017 September 10 solar limb flare. Astrophys. J. 2018b, vol. 863, iss. 1, article id. 83, 9 p. DOI: 10.3847/1538-4357/aad0ef.
24. Gary D., Bastian T.S., Chen Bin, Drake J.F., Fleishman G., Glesener L., et al. Particle acceleration and transport. New perspectives from radio, X-ray, and gamma-ray observations Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 371. Bull. American Astron. Soc. 2019, vol. 51, iss. 3, id. 371.
25. Grechnev V.V., Lesovoi S.V., Smolkov G.Ya., Krissinel B.B., Zandanov V.G., Altyntsev A.T., et al. The Siberian Solar Radio Telescope: the current state of the instrument, observations, and data. Solar Phys. 2003, vol. 216, iss. 1-2, pp. 239–272. DOI: 10.1023/A:1026153410061.
26. Grechnev V.V., Kurt V.G., Chertok I.M., Uralov A.M., Nakajima H., Altyntsev A.T., et al. An extreme solar event of 20 January 2005: Properties of the flare and the origin of energetic particles. Solar Phys. 2008, vol. 252, iss. 1, pp. 149–177. DOI: 10.1007/s11207-008-9245-1.
27. Grechnev V.V., Uralov A.M., Chertok I.M., Belov A.V., Filippov B.P., Slemzin V.A., Jackson B.V. A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. IV. Unusual magnetic cloud and overall scenario. Solar Phys. 2014, vol. 289, iss. 12, pp. 4653–4673. DOI: 10.1007/s11207-014-0596-5.
28. Grechnev V.V., Lesovoi S.V., Kochanov A.A., Uralov A.M., Altyntsev A.T., Gubin A.V., et al. Multi-instrument view on solar eruptive events observed with the Siberian Radioheliograph: From detection of small jets up to development of a shock wave and CME. J. Atmos. Solar-Terr. Phys. 2018, vol. 174, pp. 46–65. DOI: 10.1016/j.jastp.2018.04.014.
29. Kaiser M.L., Kucera T.A., Davila J.M., St. Cyr O.C., Guhathakurta M., Christian E. The STEREO mission: An introduction. Space Sci. Rev. 2008, vol. 136, iss.1-4. P. 5–16. DOI: 10.1007/s11214-007-9277-0.
30. Kaltman T.I., Korzhavin A.N., Tsap Yu.T. On a change of sign of microwave emission polarization in solar spot radio sources. Astronomicheskii zhurnal [Astron. J.]. 2005, vol. 82, p. 838. (In Russian).
31. Kaltman T.I., Bogod V.M., Stupishin A.G., Yasnov L.V. Physical conditions in the low corona and chromosphere of solar active regions according to spectral radar measurements. Geomagnetism and Aeronomy. 2013, vol. 53, iss. 8, pp. 1030–1034. DOI: 10.1134/S0016793213080082.
32. Kaltman T.I., Kochanov A.A., Myshyakov I.I., et al. Observations and modeling of the spatial distribution and microwave radiation spectrum of the active region NOAA 11734. Geomagnetism and Aeronomy. 2015, vol. 55, iss. 8, pp. 1124–1130. DOI: 10.1134/S0016793215080125.
33. Kennewell J.A. 18th NSO/Sacramento Peak Summer Workshop “Synoptic Solar Physics”. Sunspot, New Mexico, 8–12 September 1997. ASP Conf. Ser. 1998, vol. 140, pp. 529.
34. Knipp D.J., Ramsay A.C., Beard E.D., et al. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses. Space Weather. 2016, vol. 14, iss.9, pp. 614–633. DOI: 10.1002/2016SW001423.
35. Kosugi T., Matsuzaki K., Sakao T., Shimizu, T., Sone Y., Tachikawa S., et al. The Hinode (Solar-B) Mission: An Overview. Solar Phys. 2007, vol. 243, iss.1, pp. 3–17. DOI: 10.1007/s11207-007-9014-6.
36. Krieger A.S., Timothy A.F., Roelof E.C. A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 1973, vol. 29, iss. 2, pp. 505–525. DOI: 10.1007/BF00150828.
37. Kuznetsov A.A., Kontar E.P. Spatially resolved energetic electron properties for the 21 May 2004 flare from radio observations and 3D simulations. Solar Phys. 2015, vol. 290, iss. 1, pp. 79–93. DOI: 10.1007/s11207-014-0530-x.
38. Lesovoi S.V., Kobets V.S. Correlation dependences of the Siberian Radioheliograph. Solar-Terr. Phys. 2017. vol. 3, iss. 1, pp. 19–25. DOI: 10.12737/article_58f96eeb8fa318.06122835.
39. Lesovoi S.V., Kobets V.S. Simulating Siberian Radioheliograph response to the quiet Sun. Solar-Terr. Phys. 2018. vol. 4, iss. 4, pp. 82–87. DOI: 10.12737/stp-44201811.
40. Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. The Multifrequency Siberian Radioheliograph. Solar Phys. 2012, vol. 280, iss. 2, pp. 651–661. DOI: 10.1007/s11207-012-0008-7.
41. Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. A 96-antenna radioheliograph. Res. Astron. Astrophys. 2014, vol. 14, iss. 7, pp. 864–868. DOI: 10.1088/1674-4527/14/7/008.
42. Lesovoi S.V., Altyntsev A.T., Kochanov A.A., Grechnev V.V., Gubin A.V., Zhdanov D.A., et al. Siberian Radio Heliograph: first results. Solar-Terr. Phys. 2017, vol. 3, iss. 1, pp. 3–18. DOI: 10.12737/article_58f96ec60fec52.86165286.
43. Maksimov V.P., Bakunina I.A., Nefedyev V.P., Smolkov G.Ya. Method of short-term forecast of powerful solar flares. Patent N 2114449 ot 27.06.1998. Byulleten’ izobretenii [Bull. Inventions]. 1996, vol. 21, pp. 131–134. (In Russian).
44. Maksimov V.P., Prosovetsky D.V. Structure of the program of short-term prediction of power solar flares. Chin. J. Space Sci. (Spec. Iss.). 2005, vol. 25, iss. 5, pp. 329–332.
45. Marqué C., Klein K.-L., Monstein C., Opgenoorth H, Pulkkinen A, Buchert S., et al. Solar radio emission as a disturbance of aeronautical radionavigation. J. Space Weather and Space Climate. 2018, vol. 8, id. A42, 13 p.
46. Muratov A.A. Solar spectropolarimeter for 2–8 GHz range. Baikal Young Scientists’ International School on Fundamental Physics. XII Young Scientists’ Conference “Interaction of Fields and Radiation with Matter”. Irkutsk, September 19–24, 2011, pp. 21–22. (In Russian).
47. Nakajima H., Sekiguchi H., Sawa M., Kai K., Kawashima S. The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Japan. 1985, vol. 37, no. 1, p. 163.
48. Nakajima H., Nishio M., Enome S., Shibasaki K., Takano T., Hanaoka Y, et al. The Nobeyama radioheliograph. Proc. IEEE. 1994, vol. 82, iss. 5, pp. 705–713.
49. Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 3–15. DOI: 10.1007/s11207-011-9841-3.
50. Rudenko G.V., Myshyakov I.I. Analysis of reconstruction methods for nonlinear force-free fields. Solar Phys. 2009, vol. 257, iss.2, pp. 287–304. DOI: 10.1007/s11207-009-9389-7.
51. Schonfeld S.J., White S.M., Henney C.J., Arge C.N., McAteer R.T.J. Coronal sources of the solar F10.7 radio flux. Astrophys. J. 2015, vol. 808, iss. 1, article id. 29, 10 p. DOI: 10.1088/0004-637X/808/1/29.
52. Shibasaki K. Long-term global solar activity observed by the Nobeyama Radioheliograph. Publ. Astron. Soc. Japan. 2013, vol. 65, iss. SP1, S17. DOI: 10.1093/ pasj/65.sp1.S17.
53. Smolkov G.Ya., Uralov A.M., Bakunina I.A. Radio-heliographic diagnostics of the potential flare productivity of active regions. Geomagnetism and Aeronomy. 2009, vol. 49, pp. 1101–1105. DOI: 10.1134/S0016793209080106.
54. Smolkov G.Ya., Maksimov V.P., Prosovetskii D.V., Uralov A.M., Bakunina I.A. An experience of radioheliographic prediction of powerful solar flares. Bull. Crimean Astrophys. Observatory. 2010, vol. 106, pp. 31–33. DOI: 10.3103/ S0190271710010055.
55. Smolkov G.Ya., Pistolkors A.A., Treskov T.A., Krissinel B.B., Putilov V.A., Potapov N.N. The Siberian Solar Radio-Telescope: Parameters and principle of operation, objectives and results of first observations of spatio-temporal properties of development of active regions and flares. Astrophys. Space Sci. 1986, vol. 119, iss. 1, pp. 1–4. DOI: 10.1007/BF00648801.
56. Stenflo J.O. Stokes polarimetry of the Zeeman and Hanle effects. ISSI Scientific Rep. Ser. 2010, vol. 9, pp. 543–557.
57. Tanaka H., Enome S. The microwave structure of coronal condensations and its relation to proton flares. Solar Phys. 1975, vol. 40, pp. 123–131. DOI: 10.1007/BF00183156.
58. Tokhchukova S., Bogod V.M. Detection of long-term microwave “darkening” before the 14 July 2000 flare. Solar Phys. 2003, vol. 212, pp. 99–109. DOI: 10.1023/A:1022967619993.
59. Torii C., Tsukiji Y., Kobayashi S., Yoshimi N., Tanaka H., Enome S. Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proc. The Research Institute of Atmospherics. Nagoya University. 1979, vol. 26, p. 129.
60. Treumann R.A. The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 2006, vol. 13, pp. 229–315. DOI: 10.1007/s00159-006-0001-y.
61. Tritschler A., Rimmele T.R., Berukoff S., Casini R., Kuhn J.R., Lin H., Rast M.P., Mc-Mullin J.P., Schmidt W., Wöger F., DKIST Team. Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun. Astronomische Nachrichten. 2016. vol. 337. p. 1064. DOI: 10.1002/asna.201612434.
62. Tsurutani B.T., Gonzalez W.D., Gonzalez A.L.C., Guarnieri F.L., Gopalswamy N., Grande M., et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 2006, vol. 111, no. A07S01. DOI: 10.1029/ 2005JA011273.
63. Tsurutani B.T., Verkhoglyadova O.P., Mannucci A.J., Lakhina G. S., G. Li, Zank G.P. A brief review of solar flare effects on the ionosphere. Radio Sci. 2009, vol. 44, RS0A17. DOI: 10.1029/2008RS004029.
64. Uralov A.M., Rudenko G.V., Rudenko I.G. 17 GHz neutral line associated sources: Birth, motion, and projection effect. Publ. Astron. Soc. Japan. 2006, vol. 58, p. 21–28. DOI: 10.1093/pasj/ 58.1.21.
65. Uralov A.M., Grechnev V.V., Rudenko G.V., Rudenko I.G., Nakajima H. Microwave neutral line associated source and a current sheet. Solar Phys. 2008, vol. 249, pp. 315–335. DOI: 10.1007/s11207-008-9183-y.
66. Wang Z., Gary D.E., Fleishman G.D., White S.M. Coronal magnetography of a simulated solar active region from microwave imaging spectropolarimetry. Astrophys. J. 2015, vol. 805, iss. 2, article id. 93, 13 p. DOI: 10.1088/0004-637X/805/2/93.
67. Yan Y., Zhang J., Wang W., Liu F., Chen Z., Ji G. The Chinese Spectral Radioheliograph — CSRH. Earth, Moon, and Planets. 2009, vol. 104, iss. 1-4, pp. 97–100. DOI: 10.1007/ s11038-008-9254-y.
68. Yasyukevich Y., Astafyeva E., Padokhin A., Ivanova V., Syrovatskii S., Podlesnyi A. The 6 September 2017 X‐class solar flares and their impacts on the ionosphere, GNSS and HF radio wave propagation. Space Weather. 2018, vol. 16, pp. 1013–1027. DOI: 10.1029/2018SW001932.
69. Yaya P., Hecker L., Dudok de Wit T., le Fèvre C., Bruinsma S. Developing new space weather tools: Transitioning fundamental science to operational prediction systems. J. Space Weather Space Climate. 2017, vol. 7, iss. A35. DOI: 10.1051/ swsc/2017032.
70. Zhang J., Richardson I.G., Webb D.F., Gopalswamy N., Huttunen E., Kasper J.C., Nitta N.V., Poomvises W., Thompson B.J., Wu C.‐C., Yashiro S., Zhukov A.N. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. J. Geophys. Res. 2007, vol. 112, iss. A10, citeID A10102. DOI: 10.1029/2007JA012321.
71. Zhdanov D.A., Zandanov V.G. Observations of microwave fine structures by the Badary Broadband Microwave Spectropolarimeter and the Siberian Solar Radio Telescope. Solar Phys. 2015, vol. 290, iss. 1, pp. 287–294. DOI: 10.1007/ s11207-014-0553-3.
72. URL: http://badary.iszf.irk.ru/srhCorrPlot.php (accessed October 20 2019).
73. URL: https://www.ngdc.noaa.gov (accessed October 20 2019).
74. URL: https://solar.nro.nao.ac.jp/norp (accessed September 20 2019).
75. URL: http://ckp-rf.ru/usu/73606 (accessed September 20 2019).