Lesosibirsk, Krasnoyarsk, Russian Federation
, Russian Federation
Making the right management decisions in the logging industry is a complex multi-factorial task. The multivariance of solutions consists of various options for the application of technological chains of logging operations and timber transportation. Indeed, today the market offers a lot of options for systems of forestry machines, with or without forest storage with timber transportation at different seasons. Previous studies propose mathematical dependencies, an algorithm, and methods to solve all these problems. It makes it possible to search for the maximum flow of minimum cost in the dynamic structure of the technological process of performing work at the enterprise. They determine the conditions for solving the problem by the graph method. However, the proposed calculations for graphs with a large number of vertices and arcs connecting them are very laborious and require a lot of time. To solve this problem, the article presents the development of a computer application that performs basic calculations and calculates the optimal technological sequence of operations. The algorithms of the application, its description and principle of operation have been presented. The developed program enables to automate the process of finding the optimal sequence of technological operations in the logging enterprise operating procedure. Upon receipt of the results, it is possible to compare and analyze various process options for decision making.
operating procedure, timber transportation, computer program, graph, timber warehouse, process chain
Введение
Лесная промышленность в России всегда занимала немаловажное место. Однако лишь относительно недавно она стала приобретать глобальное значение, наращивая обороты с развитием различных технических и транспортных средств. Появилось много компаний, каждая из которых с целью оптимизировать процесс лесозаготовки разрабатывает свои методы и алгоритмы. Данные алгоритмы позволяют определить, в каком месте проводить заготовку, по какому пути перевозить груз, на каком этапе перевозки лучше осуществлять обработку и т.д.
Существует множество вариантов организации технологического процесса заготовки и вывозки древесины, причем использование маршрутов ее доставки носит сезонный характер. На каком-то участке дороги наиболее эффективна вывозка в зимнее время, а на каком-то – в летнее. Во многих случаях в определенный сезон транспортировка древесины вообще не возможна. Кроме того, специфика лесовозных маршрутов – ограниченная пропускная способность [5, 11, 12]. Природно-климатические, почвенно-грунтовые условия в различные периоды года значительно разделяют дороги по затратам на их восстанов-ление, обслуживание, себестоимости транспорти-ровки древесины, пропускной способности.
За долгие годы эксплуатации лесных участков, на них сформировалось большое количество транспортных путей. Перед лесозаготовителем возникает задача – найти из множества имеющихся транспортных путей, учитывая природно-климатические особенности в течение года, оптимальный маршрут транспортировки древесины с лесосеки до потребителя с минимальными затратами. Данная задача наиболее актуальна при создании сезонных запасов (нижних или промежуточных складов), создаваемых внутри маршрута. На практике решения о создании такого склада, сроках и объемов его работы принимаются без глубоких расчетов и часто не обоснованы. Решение рассматриваемой задачи позволит предприятию не только увеличить выручку и прибыль, но и решить проблему с эффективным распределением грузопотоков в различных периодах года [11, 12].
Особенно актуальна данная задача в сибирском регионе. В частности, в Красноярском крае расстояние транспортировки сухопутным транспортом достигает до 300 км. При этом часто имеется альтернатива доставки древесины водным путем [9].
В настоящее время разными исследо-вателями разработаны оптимизационные математи-ческие модели размещения транспортных сетей, отличающиеся учетом динамики таксационных характеристик насаждений, позволяющие проекти-ровать сеть дорог для вывозки древесины [9], предложены критерии, модели и алгоритмы формирования транспортных потоков лесо-материалов с арендуемых лесозаготовительных участков к потребителям [3, 4, 6, 14]. Так, в диссертации А.П. Мохирева [9] для проектиро-вания сети дорог в основу построения модели положен алгоритм построения минимального по-крывающего дерева. В работах автора P. Kovács [3], авторов A. Mokhirev, M. Gerasimova, M.К. Pozdnyakova [4] и А.В. Боженюка, Е.М. Герасименко, И.Н. Розенберга [6] к решению поставленной задачи подходят с использованием алгоритма нахождения потока минимальной стоимости. Исследователи из ПетрГУ А.П. Соколов и В.С. Сюнев [14] предлагают оптимизационную модель синтеза транспортного плана перевозок древесины, реализованной в соответствующей системе поддержки принятия решений. Однако предлагаемые подходы не учитывают сезонного районирования лесных участков для рациональной транспортировки древесины в течение года. Также данные методики трудазатратны при их практической реализации, а программного обеспечения они не имеют.
Исходя из условий многовариантности технологических процессов заготовки и вывозки древесины на реальных лесозаготовительных предприятиях, возникает следующая производ-ственная задача. На лесосеках ведется заготовка древесины в виде хлыстов, деревьев и сортиментов, которые могут вывозиться на промежуточный, нижний лесной склад или непосредственно заказчику. На складах может осуществляться обработка – обрезка сучьев и раскряжевка. С промежуточного склада груз доставляется на нижний склад или заказчику, с нижнего склада – заказчику водным или сухопутным транспортом. Все эти операции могут осуществляться в нескольких временных периодах и переходить из одного в другой, характеризуются максимальным пропускным объемом и переменными затратами (на обработку или транспортировку кубического метра древесины). Необходимо найти такие оптимальные последовательности операций в течение рассматриваемых временных периодов, чтобы суммарный объем вывезенной древесины был не меньше необходимого потребителю и не больше заготовленного на лесосеках, а затраты на их выполнение – минимальными.
Материалы и методы
Для решения поставленной задачи деятельность лесозаготовительного предприятия можно представить в виде динамической транспортной сети, от которой необходимо перейти к «растянутому во времени» на несколько периодов статическому графу [2, 6, 10]. Вершины в графе соответствуют лесосекам, потребителям, опера-циям технологического процесса в каждый период времени для каждого объекта труда (деревья, хлысты, сортименты). Решение задачи сводится к поиску в графе заданного потока минимальной стоимости.
В работе А.П Мохирева., К.П. Рукомой-никова (2019) [13] представлено описание многовариантности технологического процесса лесозаготовок в виде графа и методика его решения. Предложены математические зависи-мости, позволяющие осуществить поиск максимального потока минимальной стоимости в динамической структуре технологического про-цесса выполнения работ на предприятии. Они определяют условия решения поставленной задачи. Предложенная графоаналитическая модель позволит осуществить аналитический подход к обоснованию последовательности транспортировки древесины с лесосек, обоснованию использования в лесозаготовительном процессе лесных складов, рейдов, применению погрузочно-разгрузочных работ, обрабатывающих операций, вида транс-порта, выбору потребителя и вида конечной товарной продукции в динамических природно-производственных условиях функционирования лесозаготовительного предприятия. Отличительной характеристикой предложенной модели является ее функционирование на основе учета производитель-ности и трудозатрат, предложенных в качестве пропускных способностей дуг графа.
Так как расчеты для графов с большим количеством вершин и соединяющих их дуг весьма трудоемкие и требуют больших временных затрат, необходима разработка компьютерного приложе-ния, выполняющего основные вычисления и рас-считывающего оптимальные технологические последовательности операций. Для реализации программного продукта использована среда программирования RAD Delphi XE3.
Результаты и обсуждение
Блок-схема работы программы представлена на рис. 1. В качестве первоначальных исходных данных представляется файл в формате Excel. Заголовки строк – сокращенные названия предшествующих операций, заголовки столбцов – названия текущих операций. На пересечении столбцов и строк находятся следующие данные: пропускная способность операции (максимальный объем), переменные затраты (на единицу объема), постоянные затраты (учитываются при хранении древесины между периодами), расстояние транс-портировки древесины (для операций транспорти-ровки). Если на пересечении каких-либо строк и столбцов данных нет, то невозможно выполнить выбранную текущую операцию после выбранной предшествующей. Ввиду сезонности работ некоторые операции также могут быть временно недоступны, в таблице это обозначается при-равниванием переменных затрат бесконечности. Данные разделены на группы: операции лесосек и транспортировки с них (на промежуточный, нижний склад или заказчику), операции промежуточного склада и транспортировки (на нижний склад, заказчику, на лесосеки) и операции нижнего склада и транспортировки (на лесосеки, на нижний склад, заказчику сухопутным и водным путем).
Все вышеперечисленные показатели рассчитываются на основе данных, полученных в результате анализа и введенных пользователем (специалистом) в другой лист файла Excel.
Исходные данные формируются в виде табличных данных в среде Excel. В матрице в столбцах и строках обозначаются входные данные потоков между вершин (рис. 2). Входными технологическими данными являются: объем древесины, заготавливаемой на лесосеках, пропускные способности дуг графа, равные производительности машин и оборудования в течение временного периода, переменные затраты, равные стоимости перемещения единицы потока по дугам графа, постоянные затраты, которые учитываются при условии хранения древесины между периодами, объем древесины, необходимый потребителю.
Панель меню программы содержит пункты Файл, Настройки, Справка. В пункте Файл отображаются доступные действия с входными и выходными данными: Открыть – для загрузки таблицы Excel в программу, Сохранить – для сохранения полученных результатов в таблицу. При выборе пункта Настройки можно изменить такие параметры, как размер шрифта, высоту и ширину ячеек таблицы и т.д. В пункте Справка выводятся разъяснения о структуре вывода результатов и расшифровке названий техноло-гических операций.
Расчеты начинаются после выбора таблицы с данными в пункте меню Файл – Открыть и нажатия кнопки Расчет. Под таблицей выводится прогресс выполнения расчетов. Для нахождения потока минимальной стоимости в транспортной сети применяется алгоритм Басакера-Гоуэна, в котором кратчайший маршрут определяется на основании алгоритма Форда-Беллмана [1, 7, 8]. На каждой итерации определяется кратчайший путь от фиктивного источника (лесосеки) к фиктивному стоку (потребителю), по которому перемещается максимально возможный объем продукции. После этого строится остаточная сеть, рассчитывается время, оставшееся до окончания временных периодов, и пересчитываются пропускные способности дуг.
Выходными данными являются оптималь-ный путь от источника до стока (оптимальная технологическая цепочка), минимальные затраты на выполнение технологических операций и соответствующие объемы продукции (величина потока). Полученные результаты сохраняются в табличный документ, что позволяет хранить и сравнивать их при разных исходных данных и использовать отдельно от программы. Результаты расчета и интерфейс программы представлены на рис. 3.
Выводы
Разработанная программа позволяет автоматизировать процесс нахождения оптималь-ной последовательности технологических операций производственного процесса лесозаготовительного предприятия. Подобные расчеты вручную требуют больших временных затрат и очень трудоемки, поэтому данное приложение позволит значительно сократить трудозатраты и время на их выполнение. Полученные результаты хранятся и используются отдельно от программы в файле, что позволяет находить и сравнивать различные варианты при изменениях в исходных данных. На основании результатов расчетов исследователь может анализировать технологический процесс и прини-мать решения. Работоспособность программы подтверждена практической реализацией на примере лесозаготовительного участка ЗАО «Новоенисейский ЛХК».
Рис. 1. Блок-схема работы программы по совершенствованию технологического процесса заготовки и вывозки
древесины (собственная разработка авторов)
Рис. 2. Фрагмент таблицы входных данных (собственная разработка авторов)
Рис. 3. Пример цепочек, построенных программой (собственная разработка авторов)
Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта: «Исследование и моделирование процессов развития экономики лесной промышленности региона в контексте природно-климатических условий и ресурсного потенциала», № 18-410-240003.
Участие в «Международной научно-технической конференции «Актуальные проблемы прикладной математики, информатики и механики» проведено при поддержке Красноярского краевого фонда науки».
1. Ahuja R.K., Magnanti T.L., Orlin J. B. Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, Inc., New Jersey, 1993. 846 p.
2. Bozhenyuk A., Gerasimenko E., Rozenberg I. (2012) The methods of maximum Flow and minimum cost flow finding in fuzzy network. Proce. the Concept Discovery in Unstructured Data Workshop (CDUD 2012) 10th Int Conf. on Formal Concept Analysis (ICFCA 2012) 6-10 May 2012, Leuven Katholieke Universiteit, Belgium pp 1-12.
3. Kovács P. Minimum-cost flow algorithms: An experimental evaluation. EGRES Technical Report. 2013. № 4. DOI: 10.1080/10556788.2014.895828.
4. Mokhirev A., Gerasimova M., Pozdnyakova M. Finding the optimal route of wood transportation / IOP Conf. Ser.: Earth Environ, 2019 Sci. 226 012053. URL: https://iopscience.iop.org/article/10.1088/1755-1315/226/1/012053 doi:10.1088/1755-1315/226/1/012053.
5. Rukomoinikov K.P. Structuring of loading points and main skid road in conditions of existing road network in forest compartment // Journal of Applied Engineering Science. – 2015. – T. 13. – № 3. – S. 167–174.
6. Bozhenyuk, A. V. Opredelenie potoka minimal'noy stoimosti v nechetkom dinamicheskom grafe / A. V. Bozhenyuk, E. M. Gerasimenko, I. N. Rozenberg // Izvestiya Yuzhnogo federal'nogo universiteta. Tehnicheskie nauki. – 2013. – № 5. – S. 149-154. – URL: https://cyberleninka.ru/article/n/opredelenie-potoka-minimalnoy-stoimosti-v-nechetkom-dinamicheskom-grafe.
7. Yensen, P. Potokovoe programmirovanie / P. Yensen, D. Barnes. – Moskva : Radio i svyaz', 1984. – 392 s.
8. Kristofides, N. Teoriya grafov / N. Kristofides. – Moskva : Mir, 1978. – 432 s.
9. Mohirev, A. P. Obosnovanie proektirovaniya seti lesnyh dorog na primere predpriyatiy Nizhnego Priangar'ya : dis. … kand. tehn. nauk : special'nost' 05.21.01 «Tehnologiya i mashiny lesozagotovok i lesnogo hozyaystva» / Mohirev Aleksandr Petrovich. – Krasnoyarsk, 2007. – 176 s.
10. Nahozhdenie marshrutov dostavki drevesiny s minimal'nymi transportnymi zatratami s uchetom sezonnosti gruzoperevozok / A. P. Mohirev, M. M. Gerasimova, K. A. Komarov, V. Yu Fomina. // Forest Engineering: mater. nauch.-prakt. konferencii s mezhdunar. uchastiem. – Yakutsk, 2018. – S. 162–165.
11. Rukomoynikov, K. P. Grafoanaliticheskoe modelirovanie tehnologii pokvartal'nogo osvoeniya lesosek v nechetkih dinamicheskih prirodno-proizvodstvennyh usloviyah / K. P. Rukomoynikov // Sovremennye problemy nauki i obrazovaniya. – 2014. – № 6. – URL: https://science-education.ru/120-16417.
12. Rukomoynikov, K. P. Vybor racional'noy tehnologii i obosnovanie parametrov pokvartal'nogo osvoeniya lesnyh uchastkov : monografiya / K. P. Rukomoynikov. – Yoshkar-Ola : Povolzhskiy gosudarstvennyy tehnologicheskiy universitet, 2016. – 296 s.
13. Rukomoynikov, K. P. Obosnovanie tehnologicheskoy shemy lesozagotovitel'nyh rabot putem sozdaniya dinamicheskoy modeli funkcionirovaniya predpriyatiya / K. P. Rukomoynikov, A. P. Mohirev // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. – 2019. – № 4. – S. 94–107. – DOI: 10.17238/issn0536-1036.2019.4.94.
14. Sokolov, A. P. Optimizacionnaya model' sinteza transportnogo plana perevozok drevesiny / A. P. Sokolov, V. S. Syunev // Resources and Technology 13 (1). – 2016. – S. 1–22. – URL: https://rt.petrsu.ru/journal/article.php?id=3201.
15. Sushkov, A. S. Obosnovanie transportnyh potokov lesomaterialov v malolesnyh regionah : avtoref. dis. … kand. tehn. nauk : special'nost' 05.21.01 «Tehnologiya i mashiny lesozagotovok i lesnogo hozyaystva» / Sushkov Artem Sergeevich. – Yoshkar-Ola, 2013. – 18 s.