Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Obukhov Institute of Atmospheric Physics RAS
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
UDK 53 Физика
UDK 55 Геология. Геологические и геофизические науки
Studies of the upper atmosphere have to be performed using optical photometric and spectrometric means. Modern devices allow precise photometry of the glow of the night atmosphere — airglow — with high temporal spatial and spectral resolution. As a result, the obtained airglow parameters make it possible to determine the physicochemical properties of the upper atmosphere and observe their variation under the influence of various factors. The National Heliogeophysical Complex, which is being created in Eastern Siberia, is therefore to include a certain set of modern optical instruments. The paper presents the main phenomena that will be investigated by the optical instruments of the complex, provides information on their composition and scientific goals, presents the results of preliminary studies performed using a prototype of the instruments. As a result of the studies, the presence of a significant (about 10 m/sec) vertical wind at various altitudes (100 and 250 km) was established, the importance of taking into account the vertical wind to study the vertical dynamics of the charged component was demonstrated. The long-term dynamics of the vertical wind at an altitude of about 100 km has a pronounced seasonal variations and the absence of diurnal variations, whereas the dynamics of the vertical wind at an altitude of 250 km has a pronounced diurnal variations, which is mostly clearly defined in winter. This suggests the presumed presence of vertical circulation cells at various altitude levels. The possibilities of optical stereoscopy and differential image analysis methods are demonstrated, as applied to the study of fast luminous formations and conducting active ground and space experiments to modify Earth's ionosphere. We report the results of the determination of a three-dimensional picture of a long-lived meteor track with the use of two wide-angle cameras. We propose an algorithm that allows us to get a stereo image of events occurring in the upper atmosphere, recorded simultaneously from different observation points. The joint work of the tools of this complex and the development of cooperation with third-party organizations are shown to be a good enough direction for further study of the vertical dynamics of Earth’s upper atmosphere and space weather phenomena.
airglow, photometer, diffraction spectrometer, Fabry—Perot interferometer, all-sky camera, stereoscopy, horizontal wind, vertical wind, meteors, atmospheric electricity, artificial modification of the ionosphere
1. Astapovich I.O. Meteornye yavleniya v atmosfere Zemli [Meteor phenomena in Earth’s atmosphere]. Moscow, State Publishing House of Physics–Mathematical Literature 1958, 634 p. (In Russian).
2. Babadzhanov P.B., Obrubov Yu.V. Meteoroid swarm: formation, evolution, their relation to comets and asteroids. Astronomicheskii Vestnik [Astron. Bull.]. 1991, vol. 25, no. 4, p. 3 Moscow, 87. (In Russian).
3. Beletsky A.B., Mikhalev A.V., Chernigovskaya M.A., Sharkov E.A., Pokrovskaya I.V. Research into possibility of manifestation of tropical cyclone activity in Earth atmosphere proper airglow. Issledovanie Zemli iz kosmosa [Izvestiya, Atmospheric and Oceanic Physics]. 2010, no. 4, pp. 41–49. (In Russian).
4. Beletsky A.B., Mikhalev A.V., Khakhinov V.V., Lebedev V.P. Optical effects produced by running onboard engines of low-Earth-orbit spacecraft. Solar-Terrestrial Physics. 2016, vol. 2, iss. 4, pp. 107–117. DOI: 10.12737/24277.
5. Bernhardt P.A., Wong M., Huba J.D., Fejer B.J., Wagner L.S., Goldstain J.A., Selcher G.A., Frolov V.L., Sergeev E.N. Optical remote sensing of the thermoshere with HF pumped artificial airglow. J. Geophys. Res. 2000, vol. 105, no. A5, pp. 10657–10671.
6. Biondi A.A., Sipler D.P., Hake R.D. Optical (λ6300) detection of radio frequency heating of electrons in the F region. J. Geophys. Res. 1970, vol. 75, no. 31, pp. 6421. DOI: 10.1029/JA075i031p06421.
7. Borovička J., Spurný P., Keclíková J. A new positional astrometric method for all-sky cameras. Astronomy and Astrophysics Supplement. 1995, vol. 112, pp. 173–178.
8. Chapman S. Geomagnetismus. Oxford, 1940, vol. 1-2, 149 p.
9. Clemesha B.R., de Medeiros A.F., Gobbi D., Takahashi H., Batista P.P., Taylor M.J. Multiple wavelength optical observations of a long-lived meteor trail. Geophys. Res. Lett. 2001, vol. 28, no. 14, pp. 2779–2782. DOI: 10.1029/2000GL012605.
10. Cooray V. An Introduction to Lightning. Springer 2015. 386 p.
11. Ermilov S.Yu., Mikhalev A.V. Optical manifestation of microbursts of electron fluxes. J. Atmos. Terr. Phys. 1991, vol. 53, no. 11/12, pp. 1157–1160.
12. Ermilov S.Yu., Mikhalev A.V. Fast variations in mid-latitude sky optical radiation. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. Moscow, Nauka Publ., 1989, vol. 84, pp. 119–125. (In Russian).
13. Fabre F., Marini A., Sidler T., Morancais D., Fongy G., Vidal Ph. A demonstrator for an incoherent Doppler wind lidar receiver. Proc. SPIE. 2018, vol. 10570, 1057005.
14. Gavrilova L.A. Diffuse transmission of upper-layer night airglow by the atmosphere. Izvestiya Atmospheric and Oceanic Physics. 1987, vol. 23, no. 10, pp. 817–820.
15. Gorelyi K.I., Degtyarev V.I., Kurilov V.A. The origin of fluctuations of the ratio of basic auroral emissions during substorms. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. Moscow, Nauka Publ., 1977, iss. 43, pp. 86–89. (In Russian).
16. Issledovanie radiatsionnykh kharakteristik aerozolya v Aziatskoi chasti Rossii [Research into radiative characteristics of aerosol in Asian part of Russia]. Ed. S.M. Sakerin. Tomsk, IOA SB RAS Publ., 2012, 484 p.
17. Ivanov K.I., Komarova E.S., Vasilyev R.V., Eselevich M.V., Mikhalev A.V. Meteor trail drift research based on baseline observations. Solar-Terrestrial Physics. 2019, vol. 5, iss. 1, pp. 77–81. DOI: 10.12737/stp-51201911.
18. Kelley M.C., Gardner C., Drummond J., Armstrong T., Liu A., Chu X., Papen G., Kruschwitz C., Loughmiller P., Grime B., Engelman J. First observations of long-lived meteor trains with resonance lidar and other optical instruments. Geophys. Res. Lett. 2000, vol. 27, no. 13, pp. 1811–1814. DOI: 10.1029/1999GL011175.
19. Komarova E.S., Mikhalev A.V. Manifestation of Leonids meteor activity in the Earth’s upper atmosphere radiation. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space]. 2014, vol. 11, iss. 2, pp. 277–287. (In Russian).
20. Kouahla M.N., Moreels G., Faivre M., Clairemidi J., Meriwether J.W., Lehmacher G.A., Vidal E., Veliz O. 3D Imaging of the OH mesospheric emissive layer. Adv. Space Res. 2010, vol. 45, pp. 260–267.
21. Lu M.-R., Chen P.-Y., Kuo C.-L., Chou C.-C., Wu B.-X., Shinsuke A., Su H.-T., Hsu R.-R., Wang S.-H., Lin N.-H., Lee L.-C. Recent work on sprite spectrum in Taiwan. Terr. Atmos. Oceanic Sci. 2017, vol. 28, no. 4. DOI: 10.3319/TAO. 2016.08.26.02.
22. Ma J., Xue X., Dou X., Chen T., Tang Y., Jia M., Zou Z., Li T., Fang X., Cheng X., Sun Sh. Large-scale horizontally enhanced sodium layers coobserved in the midlatitude region of China. J. Geophys. Res.: Space Phys. 2019, vol. 124, no. 9. pp. 7614–7628.
23. Martynenko V.V. Zadachi i metody lyubitelskikh nablyudenii meteorov [Tasks and Methods of Amateur Meteor Observations. Moscow, Nauka Publ., 1967, 77 p. (In Russian).
24. McKinley D. Metody meteornoi astronomii [Methods of meteor astronomy]. Moscow, Mir Publ., 1964, 383 p.
25. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Vasilyev R.V., Artamonov M.F. Method for determining neutral wind velocity vectors using measurements of internal gravity wave group and phase velocities. Atmosphere. 2019, vol. 10, no. 9. DOI: 10.3390/atmos10090546.
26. Medvedeva I., Ratovsky K. Studying atmospheric and ionospheric variabilities from long-term spectrometric and radio sounding measurements. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 6, pp. 5151–5159. DOI: 10.1002/2015JA021289.
27. Medvedeva I.V., Ratovsky K.G. Solar activity influence on the mesopause temperature and F2 peak electron density. 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS - SPRING). 2019, pp. 3958–3964.
28. Medvedeva I.V., Semenov A.I., Pogoreltsev A.I., Tatarnikov A.V. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations. J. Atmos. Solar-Terr. Phys. 2019, vol. 187, pp. 22–32. DOI: 10.1016/j.jastp.2019. 02.005.
29. Mikhalev A.V. Mid-latitude Airglow During Heliogeophysical Disturbances. Geomagnetism and Aeronomy. 2011, vol. 51, no. 7, pp. 974–978.
30. Mikhalev A.V., Popov M.S., Kazimirovsky E.S. The manifestation of seismic activity in 557.7 nm emission variations of the Earth’s upper atmosphere. Adv. Space Res. 2001, vol. 27, no. 6-7, pp. 1105–1108.
31. Mikhalev A.V. The Earth’s upper atmosphere radiation in [OI] 557.7 nm emission during seismic events in Baikal Rift Zone. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2016, vol. 29, iss. 12, pp. 1068–1072. (In Russian).
32. Mikhalev A.V., Tashchilin M.A. Some problems in solar-terrestrial physics related to formation and dynamics of atmospheric aerosol. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2007, vol. 20, no. 6, pp. 555–558. (In Russian).
33. Mikhalev A.V., Khakhinov V.V., Beletsky A.B., Lebedev V.P. Optical effects of functioning of Progress M17-M on-board engine at thermospheric heights. Kosmicheskie issledovaniya [Cosmic Res.]. 2016, vol. 54, no. 2, pp. 113–118. (In Russian).
34. Mikhalev A.V., Beletsky A.B., Vasilyev R.V., Podlesny S.V., Tashchilin M.A., Artamonov M.F. Spectral and photometric characteristics of mid-latitude auroras during the magnetic storm of March 17, 2015. Solar-Terr. Physics. 2018, vol. 4, iss. 4, pp. 42–47. DOI: 10.12737/stp-44201806.
35. Mikhalev A.V., Tashchilin M.A., Sakerin S.M. Atmospheric aerosol effect on results of ground-based observations of the upper atmosphere radiation. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2019, vol. 32, no. 3, pp. 202–207. (In Russian).
36. Mikhalev A.V., Vasilyev R.V., Beletsky A.B. Effects of short-duration increase in intensity of atomic oxygen [OI] 630.0 nm emission at lower thermosphere heights caused by technogenetics activity. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2020, vol. 60, no. 1, pp. 116–125. (In Russian).
37. Nicoll K.A. Space weather influences on atmospheric electricity. Weather. 2014, vol. 69, no. 9, pp. 238–241. DOI: 10.1002/wea.2323.
38. Nwankwo V., Chakrabarti S., Weigel B. The effect of solar forcing induced atmospheric perturbations on LEO satellites’ nominal aerodynamic drag. 42nd COSPAR Scientific Assembly. 14-22 July 2018, Pasadena, California, USA. 2018. Abstract id. PSD.1-12-18.
39. Oppenheim M.M., Dimant Y. Meteor trails in the lower thermosphere: what do large radars really detect? // American Geophysical Union, Fall Meeting 2014, abstract id.SA41D-02.
40. Owens M.J., Scott C.J., Bennett A.J., Thomas S.R., Lockwood M., Harrison R.G., Lam M.M. Lightning as a space-weather hazard: UK thunderstorm activity modulated by the passage of the heliospheric current sheet. Geophys. Res. Lett. 2015, vol. 42, no. 22, pp. 9624–9632. DOI: 10.1002/2015GL066802.
41. Pedatella N.M., Chau J.L., Schmidt H., Goncharenko L.P., Stolle C., Hocke K., Harvey V.L., Funke B., Siddiqui T.A. How sudden stratospheric warming affects the whole atmosphere. Eos. 2018, vol. 99. DOI: 10.1029/2018EO092441.
42. Rishbeth H. The effect of winds on the ionospheric F2-peak. J. Atmos. Terr. Phys. 1967, vol. 29, no. 3, pp. 225–238. DOI: 10.1016/0021-9169(67)90192-4.
43. Rudawska R., Zender J., Koschny D., Smit H., Lohle S., Zander F., Eberhart M., Meindl A., Latorre I. A spectroscopy pipeline for the Canary island long baseline observatory meteor detection system. Planetary and Space Science. 2020, vol. 180, 104773.
44. Shefov N.N., Semenov A.I., Khomich V.Yu. Izluchenie verkhnei atmosfery — indicator ee struktury i dinamiki [The upper atmosphere radiation as an indicator of its structure and dynamics]. Moscow, GEOS Publ., 2006, 741 p. (In Russian).
45. Shindin A.V., Klimenko V.V., Kogogin D.A., Beletsky A.B., Grach S.M., Nasyrov I.A., Sergeev E.N. Spatial Characteristics of the 630-nm Artificial Ionospheric Airglow Generation Region During the Sura Facility Pumping. Radiophysics and Quantum Electronics. 2018, vol. 60, no. 11, pp. 849–865. DOI: 10.1007/s11141-018-9852-0.
46. Shiokawa K., Ogawa T., Kamide Y. Low-latitude auroras observed in Japan: 1999–2004. J. Geophys. Res. 2005, vol. 110, pp. A05202. DOI: 10.1029/2004JA010706.
47. Shiokawa K., Otsuka Y., Oyama S., Nozawa S., Satoh M., Katoh Y., et al. Development of low-cost sky-scanning Fabry — Perot interferometers for airglow and auroral studies. Earth, Planets and Space. 2012, vol. 64, pp. 1033–1046. DOI: 10.5047/eps.2012.05.004.
48. Siingh D., Singh R.P., Singh A.K., Kulkarni M.N., Gautam A.S., Singh A.K. Solar activity, lightning and climate. Surveys in Geophysics. 2011, vol. 32, no. 6, pp. 659–703. DOI: 10.1007/s10712-011-9127-1.
49. Tashchilin M.A., Beletsky A.B., Mikhalev A.V., Xu Jiyao, Yuan We. Some results of observation of spatial inhomogeneities in hydroxyl emission. Solnecho-zemnaya fizika [Solar-Terr. Phys.]. 2010, iss.15, pp. 131–134. (In Russian).
50. Tkachev I.D., Vasilyev R.V., Mikhalev A.V., Podlesny S.V., Setov A.G. Recording optical flashes in the night atmosphere from CCD photometer. Proc. SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 30 November 2017. 1046648. DOI: 10.1117/12.2288293.
51. Tkachev I.D., Vasilyev R.V., Mikhalev A.V., Podlesny S.V. Simultaneous observations of fast optical events in the Earth’s atmosphere by optical devices complex. Proc. SPIE 11208, 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 18 December 2019. 112089C. DOI: 10.1117/12.2540839.
52. Toroshelidze T.I., Fishkova L.M. Analysis of oscillations of the middle and upper atmosphere night airglow preceding earthquakes. Doklady AN SSSR [Doklady Earth Sciences]. 1988, vol. 302, no. 2, pp. 313–316. (In Russian).
53. Vasilyev R.V., Artamonov M.F., Beletsky A.B., Zherentsov G.A., Medvedeva I.V., Mikhalev A.V., Syrenova T.E. Registering upper atmosphere parameters in East Siberia with Fabry—Perot Interferometer KEO Scientific “Arinae”. Solar-Terrestrial Physics. 2017, vol. 3, iss. 3, pp. 61–75. DOI: 10.12737/stp-33201707.
54. Vasilyev R.V., Artamonov M.F., Merzlyakov E.G. Comparative statistical analysis of neutral wind in mid-latitude mesosphere / lower thermosphere based on meteor radar and Fabry—Perot interferometer data. Solar-Terrestrial Physics. 2018, vol. 4, iss. 2, pp. 49–57. DOI: 10.12737/stp-42201808.
55. Vorontsov-Velyaminov V.A. Ocherki o vselennoi. Khimicheskii sostav Zemli i meteoritov [Esseys about the Universe. Chemical Composition of Earth and Meteorites]. Moscow, Nauka Publ., 1969, vol. 1, 476 p.
56. Whiter D.K., Gustavsson B., Partamies N., Sangalli L. A new automatic method for estimating the peak auroral emission height from all-sky camera images. Geoscientific Instrumentation, Methods and Data Systems. 2013, vol. 2, pp. 131–144. DOI: 10.5194/gi-2-131-2013.
57. Wu Q., Li H., Wang C. Lightning response during Forbush Decrease in the tropics and subtropics. J. Atmos. Solar-Terr. Phys. 2019, vol. 195, article id. 105134. DOI: 10.1016/j.jastp.2019. 105134.
58. URL: http://ckp-rf.ru/ckp/3056 (accessed 30 September 2019).