Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
UDK 62 Инженерное дело. Техника в целом. Транспорт
Under the project National Heliogeophysical Complex of the Russian Academy of Sciences, it is planned to create several coherent decameter radars. ISTP SB RAS developed a network of coherent decameter radars well before the start of financing this project. This has provided extensive experience in operating such radars, has enabled us to identify their technological problems, which should be solved when creating radars of own design, and to develop a project of radars with broader capabilities for diagnostics of the ionosphere as compared to existing radars of similar types. The paper analyzes the existing EKB ISTP SB RAS radar, reviews its technological problems, and proposes the structure of a new radar of SECIRA type. We report the results of prototyping of elements of the SECIRA radar, which demonstrate the possibility of its implementation. We discuss the potential applicability of the radar to ionospheric studies on the territory of the Russian Federation, in particular in high-latitude regions.
decameter radar, SuperDARN, SECIRA, ionosphere, back scattering
1. Arnold N.F., Cook P.A., Robinson T.R., Lester M., Chapman P.J., Mitchell N. Comparison of D-region Doppler drift winds measured by the SuperDARN Finland HF radar over an annual cycle using the Kiruna VHF meteor radar. Annales Geophysicae. 2003, vol. 21, no. 10, pp. 2073–2082. DOI: 10.5194/angeo-21-2073-2003.
2. Barthes L., Andre D.A., Cerisier J.-C., Villain J.-P. Sepa¬ration of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars. Radio Sci. 1998, vol. 33, no. 4, pp. 1005–1017. DOI: 10.1029/98rs00714.
3. Berngardt O.I., Zolotukhina N.A., Oinats A.V. Observa¬tions of field–aligned ionospheric irregularities during quiet and disturbed conditions with EKB radar: First results. Earth, Planets and Space. 2015a, vol. 67, no. 1, p. 143. DOI: 10.1186/s40623-015-0302-3.
4. Berngardt O.I., Perevalova N.P., Dobrynina A.A., Kutelev K.A., Shestakov N.V., Bakhtiarov V.F., Kusonsky O.A., Zagretdinov R.V., Zherebtsov G.A. Toward the azimuthal char¬acteristics of ionospheric and seismic effects of “Chelyabinsk” meteorite fall according to the data from coherent radar, GPS, and seismic networks. J. Geophys. Res.: Space Phys. 2015b, vol. 120, no. 12, pp. 10,754–10,771. DOI: 10.1002/2015JA021549.
5. Berngardt O.I., Kutelev K.A., Kurkin V.I., Grkovich K.V., Yampolsky Yu.M., Kashcheyev A.S., Kashcheyev S.B.,. Galushko V.G, Grigorieva S.A. i Kusonsky O.A. Bistatic sounding of high-latitude ionospheric irregularities using a Decameter EKB Radar and an UTR-2 Radio Telescope: First results. Radiophysics and Quantum Electronics. 2015c, vol. 58, no. 6, pp. 390–408. DOI: 10.1007/s11141-015-9614-1.
6. Berngardt O.I., Voronov A.L., Grkovich K.V. Optimal sig¬nals of Golomb ruler class for spectral measurements at EKB SuperDARN radar: Theory and experiment. Radio Sci. 2015d, vol. 50, no. 6, pp. 486–500. DOI: 10.1002/2014RS005589.
7. Berngardt O.I., Kutelev K.A., Potekhin A.P. SuperDARN scalar radar equations. Radio Sci. 2016, vol. 51, no. 10, pp. 1703–1724. DOI: 10.1002/2016rs006081.
8. Berngardt O.I., Ruohoniemi J.M., Nishitani N., Shepherd S.G., Bristow W.A., Miller E.S. Attenuation of decameter wavelength sky noise during X-ray solar flares in 2013–2017 based on the observations of midlatitude HF radars. J. Atmos. Solar-Terr. Phys. 2018, vol. 173, pp. 1–13. DOI: 10.1016/j.jastp.2018.03.022.
9. Berngardt O.I., Ruohoniemi J.M., St-Maurice J.-P., Marchaudon A., Kosch M.J., Yukimatu A.S., Nishitani N., Shepherd S.G., Marcucci M.F., Hu H., Nagatsuma T., Lester M. Global diagnostics of ionospheric absorption during X-ray solar flares based on 8- to 20-MHz noise measured by over-the-horizon radars. Space Weather. 2019a, vol. 17, no. 6, pp. 907–924. DOI: 10.1029/2018SW002130.
10. Berngardt O.I., Fedorov R.R., Ponomarenko P., Grkovich K.V. Interferometric calibration and the first elevation obser¬vations at EKB ISTP SB RAS radar at 10–12 MHz. arXiv e-prints. 2019b. arXiv: 1912.05788 [physics.geo-ph].
11. Blanchard G.T., Sundeen S., Baker K.B. Probabilistic identi¬fication of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics. Radio Sci. 2009, vol. 44, no. 5, RS5012. DOI: 10.1029/2009rs004141.
12. Bland E.C., Heino E., Kosch M.J., Partamies N. SuperDARN radar-derived HF radio attenuation during the September 2017 solar proton events. Space Weather. 2018, vol. 16, iss. 10, pp. 1455–1469. DOI: 10.1029/2018sw001916.
13. Bristow W.A. Application of RADAR imaging analysis to SuperDARN observations. Radio Sci. 2019, vol. 54, no. 7, pp. 692–703. DOI: 10.1029/2019rs006851.
14. Chakraborty S., Ruohoniemi J.M., Baker J.B.H., Nishitani N. Characterization of short-wave fadeout seen in day¬time SuperDARN ground scatter observations. Radio Sci. 2018, vol. 53, no. 4, pp. 472–484. DOI: 10.1002/2017RS006488.
15. Chelpanov M.A., Mager O.V., Mager P.N., Klimushkin D.Yu., Berngardt O.I. Properties of frequency distribution of Pc5-range pulsations observed with the Ekaterinburg decameter radar in the nightside ionosphere. J. Atmos. Solar-Terr. Phys. 2018, vol. 167, pp. 177–183. DOI: 10.1016/j.jastp.2017.12.002.
16. Chisham G. Calibrating SuperDARN interferometers us¬ing meteor backscatter. Radio Sci. 2018, vol. 53, no. 6, pp. 761–774. DOI: 10.1029/2017RS006492.
17. Chisham G., Freeman M.P. A reassessment of SuperDARN meteor echoes from the upper mesosphere and lower thermo¬sphere. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 207–221. DOI: 10.1016/j.jastp.2013.05.018.
18. Chisham G., Lester M., Milan S.E., Freeman M.P., Bris¬tow W.A., McWilliams K.A., Ruohoniemi J.M., et al. A dec¬ade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques andfuture directions. Surv. Geophys. 2007, no. 28, pp. 33–109. DOI: 10.1007/s10712-007-9017-8.
19. Chizurumoke M.M., Yeoman T.K., Wright D.M., Milan S.E., James M.K. A ray tracing simulation of HF ionospheric radar performance at African equatorial latitudes. Radio Sci. 2020. vol. 55, no. 2, e2019RS006936. DOI: 10.1029/2019rs006936.
20. Farley D.T. Multiple-pulse incoherent-scatter correlation function measurements. Radio Sci. 1972, vol. 7, no. 6, pp. 661–666. DOI: 10.1029/rs007i006p00661.
21. Gillies R.G., Hussey G.C., Sofko G.J., Ponomarenko P.V., McWilliams K.A. Improvement of HF coherent radar line-of-sight velocities by estimating the refractive index in the scat¬tering volume using radar frequency shifting. J. Geophys. Res. 2011, vol. 116, A01302. DOI: 10.1029/2010JA016043.
22. Greenwald R.A., Baker K.B., Dudeney J.R., Pinnock M., Jones T.B., Thomas E.C., Villain J.-P., Cerisier J.-C., et al. DARN/SuperDARN: A global view of the dynamics of high-latitude convection. Space Sci. Rev. 1995, vol. 71, pp. 761–796. DOI: 10.1007/BF00751350.
23. Greenwald R.A., Oksavik K., Barnes R., Ruohoniemi J.M., Baker J., Talaat E.R. First radar measurements of ionospheric electric fields at sub-second temporal resolution. Geophys. Res. Lett. 2008, vol. 35, no. 3, L03111. DOI: 10.1029/2007gl032164.
24. Ivanov V.A., Kurkin V.I., Nosov V.E., Uryadov V.P., Shumaev V.V. Chirp ionosonde and its application in the ionospheric research. Radiophys. and Quant. Electron. 2003, vol. 46, no. 11, pp. 821–851. DOI: 10.1023/B:RAQE.0000028576.51983.9c.
25. de Larquier S., Ponomarenko P., Ribeiro A.J., Ruoho-niemi J.M., Baker J.B.H., Sterne K.T., Lester M. On the spa¬tial distribution of decameter-scale subauroral ionospheric irregularities observed by SuperDARN radars. J. Geophys. Res.: Space Phys. 2013, vol. 118, no. 8, pp. 5244–5254. DOI: 10.1002/jgra.50475.
26. Lavygin I.A., Lebedev V.P., Grkovich K.V., Berngardt O.I.. Identifying ground scatter and ionospheric scatter signals by using their fine structure at Ekaterinburg Decametre Coherent Radar. IET Radar, Sonar & Navigation. 2020, vol. 14, no. 1, pp. 167–176. DOI: 10.1049/iet-rsn.2019.0192.
27. Lester M., Chapman P., Cowley S.W.H., Crooks S., Da¬vies J., Hamadyk P., McWilliams K., Milan S.E., et al. Stereo CUTLASS — A new capability for the SuperDARN HF radars. Ann. Geophys. 2004, vol. 22, no. 2, pp. 459–473. DOI: 10.5194/angeo-22-459-2004.
28. Mager P.N., Berngardt O.I., Klimushkin D.Yu., Zolotukhina N.A., Mager O.V. First results of the high-reso-lution multibeam ULF wave experiment at the Ekaterinburg SuperDARN radar: Ionospheric signatures of coupled poloidal Alfv’en and drift-compressional modes. J. Atmos. Solar-Terr. Phys. 2015, vol. 130–131, pp. 112–126. DOI: 10.1016/j.jastp.2015.05.017.
29. Mager O.V., Chelpanov M.A., Mager P.N., Klimushkin D.Yu., Berngardt O.I. Conjugate ionosphere-magnetosphere observations of a sub-Alfvenic compressional intermediate-m wave: A case study using EKB radar and Van Allen probes. J. Geophys. Res.: Space Phys. 2019, vol. 124, no. 5, pp. 3276–3290. DOI: 10.1029/2019JA026541.
30. Nishitani N., Ruohoniemi J.M., Lester M., Baker J.B.H., Koustov A.V., Shepherd S.G., Chisham G., Hori T., et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Progress in Earth and Planet. Sci. 2019, vol. 6, no. 1, p. 27. DOI: 10.1186/s40645-019-0270-5.
31. Oinats A., Nishitani N., Ponomarenko P., Berngardt O., Ratovsky K. Statistical characteristics of medium-scale trav¬eling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth, Planets and Space. 2016, vol. 68, no. 1, p. 8. DOI: 10.1186/s40623-016-0390-8.
32. Ponomarenko P.V., St-Maurice J.-P., Waters C.L., Gil¬lies R.G., Koustov A.V. Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes. Ann. Geophys. 2009, vol. 27, pp. 4207–4219. DOI: 10.5194/angeo-27-4207-2009.
33. Ponomarenko P., Nishitani N., Oinats A.V., Tsuya T., St.-Maurice J.-P. Application of ground scatter returns for cali¬bration of HF interferometry data. Earth, Planets and Space. 2015, vol. 67, no. 1, p. 138. DOI: 10.1186/s40623-015-0310-3.
34. Ponomarenko P.V., St-Maurice J.-P., McWilliams K.A. Calibrating HF radar elevation angle measurements using E layer backscatter echoes. Radio Sci. 2018, vol. 53, no. 11, pp. 1438–1449. DOI: 10.1029/2018rs006638.
35. Ribeiro A.J., Ruohoniemi J.M., Baker J.B.H., Clausen S., de Larquier S., Greenwald R.A. A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations. Radio Sci. 2011, vol. 46, RS4011. DOI: 10.1029/2011RS004676.
36. Ribeiro A.J., Ruohoniemi J.M., Ponomarenko P.V., Clausen L.B.N., Baker J.B.H., Greenwald R.A., Oksavik K., de Larquier S. A comparison of SuperDARN ACF fitting methods. Radio Sci. 2013, vol. 48, no. 3, pp. 274–282. DOI: 10.1002/rds.20031.
37. Robinson T.R., McCrea I.W., van Eyken A.P., Wright D.M., Thornhill J.D., Thomas E.C., Lester M., Dhillon R.S., Yeoman T.K. First observations of SPEAR-induced artificial backscatter from CUTLASS and the EISCAT Sval-bard radars. Ann. Geophys. 2006, vol. 24, iss. 1, pp. 291–309. DOI: 10.5194/angeo-24-291-2006.
38. RST – Radar Software Toolkit. 2019. URL: https://github. com/SuperDARN/rst. (accessed November 20, 2019).
39. Spaleta J., Bristow W.A., Parris R.T., Balaji M., Watari S. Enhanced line of sight velocity analysis using an aperiodic pulse sequence on the Kodiak and King Salmon Radars. SuperDARN 2008 Workshop. 02–06 June 2008, Newcastle, Australia. 2008. URL: http://www.tiger.latrobe.edu.au/ superdarn2008/procCD/presentations/1070.pdf (accessed November 20, 2019).
40. Vertogradov G.G., Uryadov V.P., Vertogradova E.G., Vertogradov V.G., Kubatko S.V. Chirp ionosonde–radiodirection finder as a new tool for studying the ionosphere and radio-wave propagation. Radiophys. and Quant. Electron. 2013, vol. 56, no. 5, pp. 259–275. DOI: 10.1007/s11141-013-9431-3.
41. URL: vt.superdarn.org (accessed November 20, 2019).