Sankt-Peterburg, Russian Federation
We have investigated the cause of three “isolated” negative radio bursts recorded one after another at several frequencies in the 1–17 GHz range at the Nobeyama Radio Observatory, Ussuriysk Astrophysical Observatory, and Learmonth Solar Observatory on April 10–11, 2014. The cause of the rarely observed “isolated” negative bursts is the absorption of radio emission from the quiet Sun’s regions or a radio source in the material of a large eruptive filament. Analysis of observations in different spectral ranges using images from the Nobeyama radioheliograph and the Solar Dynamics Observatory/Atmospheric Imaging Assembly has shown that the cause of all the three radio emission depressions was the screening of the limb radio source by the material of recurrent coronal jets. Parameters of the absorbing material were estimated using a previously developed model. These estimates confirmed the absorption of solar radio emission in cold material with a temperature of ~104 K at the bottom of the jets.
solar radio emission, microwave negative burst, radio source, active prominence, recurrent coronal jet
1. Borovik V.N. Quiet Sun from the multifrequency radio observations on RATAN-600. Lectures Notes in Physics. 1994, vol. 432, pp. 185–190.
2. Chen H.D., Jiang Y.C., Ma S.K. Observations of Hα surges and ultraviolet jets above satellite sunspots. Astron. Astrophys. 2008, vol. 478, pp. 907–913. DOI: 10.1051/0004-6361:20078641.
3. Chen H.D., Jiang Y.C., Ma S.K. An EUV jet and Hα filament eruption associated with flux cancelation in decaying active region. Solar Phys. 2009, vol. 255, iss. 1, pp. 79–90 DOI: 10.1007/s11207-008-9298-1.
4. Covington A.E., Dodson H.W. Absorption of 10.7-centimetre solar radiation during flare of May 19, 1951. J. Roy. Astron. Soc. Can. 1953, vol. 47, pp. 207–211.
5. Fedotova A.Yu., Altyntsev A.T., Kochanov A.A., Lesovoi S.V., Meshalkina N.S. Observation of eruptive events with the Siberian Radioheliograph. Solar-Terr. Phys. 2018, vol. 4, iss. 3, pp. 13–19. DOI: 10.12737/stp-43201802.
6. Grechnev V.V., Uralov A.M., Slemzin V.A., Chertok I.M., Kuzmenko I.V., Shibasaki K. Absorption phenomena and a probable blast wave in the 13 July 2004 eruptive event. Solar Phys. 2008, vol. 253, iss. 1-2, pp. 263–290. DOI: 10.1007/s11207-008-9178-8.
7. Grechnev V.V., Kuzmenko I.V, Uralov A.M,, Chertok I.M., Kochanov A.A. Microwave negative bursts as indications of reconnection between eruptive filaments and large-scale coronal magnetic environment. Publ. Astron. Soc. Jap. 2013, vol. 65, no. SP1, article id. S10, 9 p. DOI: 10.1093/pasj/65.sp1.S10.
8. Grechnev V.V., Lesovoi S.V., Kochanov A.A., Uralov A.M., Altyntsev A.T., Gubin A.V., Zhdanov D.A., Ivanov E.F., Smolkov G.Ya., Kashapova L.K. Multi-instrument view on solar eruptive events observed with the Siberian Radioheliograph: from detection of small jets up to development of a shock wave and CME. J. Atmos. Solar-Terr. Phys. 2018, vol. 174, pp. 46–65. DOI: 10.1016/j.jastp.2018.04.014.
9. Jiang Y., Bi Y., Yang J., Li H., Yang B., Zheng R. Recurrent two-sided loop-type jets due to a bipole emerging below transequatorial loops. Astrophys. J. 2013, vol. 775, iss. 2, article id. 132, 6 p. DOI: 10.1088/0004-637X/775/2/132.
10. Kuzmenko I.V., Grechnev V.V. Development and parameters of a non-self-similar CME caused by the eruption of a quiescent prominence. Solar Phys. 2017, vol. 292, iss. 10, article id. 143, 25 p. DOI: 10.1007/s11207-017-1167-3.
11. Kuzmenko I.V., Grechnev V.V., Uralov A.M. A study of eruptive solar events with negative radio bursts. Astronomicheskii zhurnal [Astronomy Reports]. 2009, vol. 86, no. 11, pp. 1114–1124. DOI: 10.1134/S1063772909110092. (In Russian).
12. Lesovoi S.V., Altyncev A.T., Kochanov A.A., Grechnev V.V., Gubin A.V., Zhdanov D.A., Ivanov E.F., Uralov A.M., Kashapova L.K., Kuznecov A.A., Meshalkina N.S., Sych R.A. Siberian Radioheliograph: first results. Solar-Terr. Phys. 2017, vol. 3, iss. 1, pp. 3–18. DOI: 10.12737/article_58f96ec 60fec52.86165286.
13. Maksimov V.P., Nefed’ev V.P. The observation of a `negative burst’ with high spatial resolution. Solar Phys. 1991, vol. 136, iss. 2, pp. 335–342.
14. Raouafi N.E., Patsourakos S., Pariat E., Young P.R., Sterling A.C., Savcheva A., Shimojo M., Moreno-Insertis F., DeVore C.R., Archontis V., Török T., Mason H., Curdt W., Meyer K., Dalmasse K., Matsui Y. Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 2016, vol. 201, iss. 1-4, pp. 1–53. DOI: 10.1007/s11214-016-0260-5.
15. Sawyer C. Are «negative burst» due to absorption? Solar Phys. 1977, vol. 51, pp. 203–215.
16. Shen Y., Liu Y., Su J., Deng Y. On a coronal blowout jet: the first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. Astrophys. J. 2012, vol. 745, iss. 2, article id. 164, 8 p. DOI: 10.1088/0004-637X/745/2/164.
17. Shen Y., Liu Y.D., Su J., Qu Z., Tian Z. On a solar blowout jet: driving mechanism and the formation of cool and hot components. Astrophys. J. 2017, vol. 851, iss. 1, article id. 67, 13 p. DOI: 10.3847/1538-4357/aa9a48.
18. Yokoyama T., Shibata K. Magnetic reconnection as the origin of X-ray jets and H surges on the Sun. Nature. 1995, vol. 375, iss. 6526, pp. 42–44. DOI: 10.1038/375042a0.