Russian Federation
Sankt-Peterburg, St. Petersburg, Russian Federation
In this paper is investigated the possibility of Augmented Reality (AR) technologies contextualizing in teaching methods for “Descriptive Geometry” (DG) student course. The aim of the investigation was the study of the current state of knowledge and practice in the field of DG students teaching with the help of AR-technologies, and identification of key issues affecting the adoption by users (teachers and students) of AR-technologies as a modern educational tool in the. Conducted an analysis of existing researches in the field of modern educational tool in the field of DG. Has been carried out the analysis of current investigations in the field of DG students teaching based on AR-technology. The key problems affecting the adoption by users of AR-technologies as an educational tool in the field of DG have been determined. Existing methods of DG students teaching using AR-technologies in St. Petersburg Mining University are gradually completed and updated. The work results showed that students have a positive perception of educational classes on DG course based on AR-technologies. Students successfully solve DG problems using AR-technology based on Vuforia platform; create 3-D models of geometric entities in SketchUp, and labels for camera fixing based on AutoCAD. When creating the software, the compiled C ++ programming language is used, based on which scripts (markers) are written that lift 3-D models of objects to given planes. The study results will be useful for developers of AR-platforms, AR-applications in the field of DG students training. They will allow avoid projects that may cause problems with the convenience of AR-applications using, what, in turn, will lead to the rejection of users from the introduction of this technology when getting students education in DG.
augmented reality (AR), descriptive geometry (DG), Vuforia, SkethUp, AutoCAD, spatial thinking
1. Belova O.P., Kaznin A.A. Primenenie tekhnologii dopolnennoj real'nosti dlya graficheskoj vizualizacii uchebnyh zadach prostranstvennoj geometrii [Application of augmented reality technology for graphical visualization of educational problems of spatial geometry]. Nauchno-metodicheskij elektronnyj zhurnal «Koncept» [Scientific and methodological electronic journal «Concept»]. 2017, I. 39, pp. 3521-3525. Available at: http://e-koncept.ru/2017/971031.htm. (in Russian)
2. Blagoveshchensky I.A., Dem'yankov N.A. Tekhnologii i algoritmy dlya sozdaniya dopolnennoj real'nosti [Technologies and algorithms for creating Augmented Reality]. Modelirovanie i analiz informacionnyh sistem [Modeling and analysis of information systems]. 2013, V. 20, I. 2, pp. 129-138. – DOI: 10.18255/1818-1015-2013-2-129-138. (in Russian)
3. Douson M. Izuchaem S++ cherez programmirovanie igr [Beginning C++ through game programming]. St. Petersburg, Piter Publ., 2016. 351 p. (in Russian)
4. Ivanov V.N., Krivoshapko S.N., Romanova V.A. Osnovy razrabotki i vizualizacii ob"ektov analiticheskih poverhnostej i perspektivy ih ispol'zovaniya v arhitekture i stroitel'stve [Fundamentals of the development and visualization of objects of analytical surfaces and the prospects for their use in architecture and construction]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 1, I. 4, pp. 3-14. – DOI: 10.12737/article_5a17f590be3f51.37534061. (in Russian)
5. Ignat'ev S.A. Tekhnologii testirovaniya v ocenke predmetnoj gotovnosti studentov k izucheniyu geometro-graficheskih disciplin vuza [Testing technologies in assessing the subject readiness of students to study the geometric-graphic disciplines of the university]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 4, pp. 65-75. – DOI: 10.12737/2308-4898-2020-65-75. (in Russian)
6. Ignat'ev S.A. Opyt razrabotki elektronnyh sredstv obucheniya dlya prepodavaniya geometro-graficheskih disciplin [Experience of development of electronic learning tools for teaching geometro-graphic disciplines]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 2, pp. 84-92. – DOI: 10.12737/article_5953f362d92c46.58282826. (in Russian)
7. Mashnin T. Razrabotka Android-prilozhenij s Augmented Reality [Development of Android applications with Augmented Reality]. Ekaterinburg, Izdatel'skie resheniya Publ., 2017. 240 p. (in Russian)
8. Panchenko V.A. Sovremennye sredstva obucheniya graficheskim disciplinam studentov zaochnoj formy obucheniya [Modern means of teaching graphic disciplines of students of correspondence courses]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 4, pp. 72-87. – DOI: 10.12737/article_5c21fa732f6b62.81431444. (in Russian)
9. Savel'ev YU.A., Babich E.V. Komp'yuternaya metodika izucheniya nachertatel'noj geometrii. Tekhnicheskoe zadanie [Computer technique for the study of descriptive geometry. Terms of Reference]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 67–74. – DOI: 10.12737/article_5ad09d62e8a792.47611365. (in Russian)
10. Sal'kov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskih innovacij [The geometric component of technical innovation]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 85-93. – DOI: 10.12737/article_5b55a 5163fa053.07622109. (in Russian)
11. Turutina T.F. Primenenie informacionnyh tekhnologij v metodike proverki graficheskoj gramotnosti budushchih specialistov [The use of information technology in the methodology of checking graphic literacy of future specialists]. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 1, pp. 45-56. – DOI: 10.12737/2308-4898-2020-45-56. (in Russian)
12. Usataya T.V., Deryabina L.V., Reshetnikova E.S. Sovremennye podhody k proektirovaniyu izdelij v processe obucheniya studentov komp'yuternoj grafike [Modern approaches to product design in the process of teaching students computer graphics]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 74-82. – DOI: 10.12737/article_5c91fd2bde0ff7.07282102. (in Russian)
13. Fedoseeva M.A. Metodika podgotovki studentov tekhnicheskih vuzov graficheskim disciplinam [Methods of preparing students of technical universities for graphic disciplines]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 68-73. – DOI: 10.12737/article_5c91fed8650bb7.79232969. (in Russian)
14. Argelia Aguilera González N. How to include Augmented Reality in Descriptive Geometry Teaching. Procedia Computer Science. 2015, I. 75, pp. 250-256. – DOI: 10.1016/j.procs.2015.12.245.
15. ARtoolkit (2020). Available at: http://www.artoolkitx.org (accessed 1 April 2020).
16. Cascales-Martínez A., Martínez-Segura M.J., Pérez-López D., Contero M. Using an augmented reality enhanced tabletop system to promote learning of mathematics: A case study with students with special educational needs. Eurasia Journal of Mathematics Science and Technology Education. 2017, I. 13(2), pp. 355-380. – DOI: 10.12973/eurasia.2017.00621a.
17. Cheng J., Wang Y., Tjondronegoro D.W., Song W. (2018). Construction of Interactive Teaching System for Course of Mechanical Drawing Based on Mobile Augmented Reality Technology. iJET, I. 13 (1), pp. 126-139. – DOI: 10.3991/ijet.v13i02.7847.
18. de Lima A.J.R., de Lima L.G.R., Haguenauer C.J., Cunha G.G. (2009). Learning objects and virtual reality in teaching Descriptive Geometry, pp. 1-7. – Available at: https://pdfs.semanticscholar.org/e79b/8a66284e195ffc3e1970736e1270a3658f5d.pdf?_ga=2.265529359.1845255107.1589734593-1463876164.1588513433 (accessed 1 April 2020).
19. de Lima A.J.R., Cunha G.G., Haguenauer C.J. (2009). Torus Surfaces of Descriptive Geometry in Augmented Reality, pp. 1-3. – Available at: https://www.semanticscholar.org/paper/Torus-Surfaces-of-Descriptive-Geometry-in-Augmented-Lima-Cunha/9b34049b6924386bbfcbc9fb95ffed14d3a6705c (accessed 1 April 2020).
20. de Ravé E.G., Jiménez-Hornero F.J., Ariza-Villaverde A.B., Taguas-Ruiz J. (2016). DiedricAR: a mobile augmented reality system designed for the ubiquitous descriptive geometry learning. Multimedia Tools and Applications, I. 75 (16), pp. 9641-9663. – DOI: 10.1007/s11042-016-3384-4.
21. Kaufmann H. (2006). The potential of augmented reality in dynamic geometry education. Proc. 12th International conference on geometry and graphics (ISGG6-10). Salvador, Brazil, pp. 1-14. – Available at: https://www.academia.edu/17197929/ The_potential_of_augmented_reality_in_dynamic_geometry_education (accessed 1 April 2020).
22. Kaufmann H., Schmalstieg D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, I. 27(3), pp. 339-345. – Available at: https://www.academia.edu/17098075/Mathematics_and_geometry_education_with_collaborative_augmented_reality (accessed 1 April 2020).
23. Kaufmann H., Steinbügl K., Dünser A., Glück J. (2005). General Training of Spatial Abilities by Geometry Education in Augmented Reality. Annual Review of CyberTherapy and Telemedicine. A Decade of VR, I. 3, pp. 65-76. – Available at: https://www.academia.edu/17197901/General_training_of_spatial_abilities_by_geometry_education_in_augmented_reality (accessed 1 April 2020).
24. Martin-Gutiérrez J.M., García-Domínguez M., Roca-González C., Sanjuán-Hernan Pérez A., MatoCarrodeguas C. (2013). Comparative Analysis Between Training Tools in Spatial Skills for Engineering Graphics Students Based in Virtual Reality, Augmented Reality and PDF3D Technologies. Procedia Computer Science, I. 25, pp. 360-363. – DOI: 10.1016/j.procs.2013.11.043.
25. Merkulova V.A., Voronina M.V., Tretyakova Z.O. (2018) Designing mountain drawings with the help of computer-aided design (CAD). IOP Conf. Series: Materials Science and Engineering, V. 451 (2018) 012122, I. 1, pp. 1-7. – DOI: 10.1088/1757-899X/451/1/012122.
26. Omar M., Ali D.F., Mokhtar M., Zaid N.M., Jambari H., Ibrahim N. I. (2019). Effects of Mobile Augmented Reality (MAR) towards Students’ Visualization Skills when Learning Orthographic Projection. IJET, I. 14 (20), pp. 106-119. – DOI: 10.3991/ijet.v14i20.11463.
27. Sketchup (2020). Available at: https://www.sketchup.com/ru (accessed 1 April 2020).
28. Tretyakova Z.O., Voronina M.V., Merkulova V.A. (2019) Geometric modelling of building forms using BIM, VR, AR-technology. IOP Conf. Series: Materials Science and Engineering, V. 687 (2019) 044048, I. 4, pp. 1-8. – DOI: 10.1088/1757-899X/687/4/044048.
29. Veide Z., Stroževa V., Dobelis M. (2014). Application of Augmented Reality for Teaching Descriptive Geometry and Engineering Graphics Course to First-Year Students. ICIT, pp. 158-164. – Available at: https://www.semanticscholar.org/paper/Application-of-Augmented-Reality-for-Teaching-and-Veide-Stroževa/86bd7df6c0be89d858f4d4b211c7771610203545#citing-papers (accessed 1 April 2020).
30. Voronina M.V., Tretyakova Z.O., Krivonozhkina E.G., Buslaev S.I., Sidorenko G.G. (2019). Augmented Reality in Teaching Descriptive Geometry, Engineering and Computer Graphics – Systematic Review and Results of the Russian Teachers’ Experience. EURASIA Journal of Mathematics, Science and Technology Education, I. 15(12), pp. 1-17. – DOI: 10.29333/ejmste/113503.
31. Vuforia (2020). Available at: https://developer.vuforia.com (accessed 1 April 2020).
32. Unity (2020). Available at: https://unity.com/ru (accessed 1 April 2020).