Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk incoherent scatter radar (IISR) is an oblongish horn antenna that operates in a meter waveband (154–162 MHz), has a 0.5°×20° beam, and a frequency steering allowing us to tilt the beam by 30° to the south. Besides active measurements of ionospheric conditions and monitoring of space objects, the radar is regularly used for passive radio astronomical observations. From May to August, the Sun crosses the radar field of view and can be in the maximum of the radiation pattern for about two hours. The known shape of the radiation pattern and the high sensitivity of the receiver allow us to conduct calibrated measurements of the solar flux in solar flux units during this period. We have developed a new approach to the calibration, which can be applied to all IISR archival passive data. In the paper, we present long-term observations (2011–2019) of the solar flux in May and summer. We describe the measurement method, present daily average values of the solar flux for this period of passive measurements, and compare it with the solar activity F10.7 index and solar flux measurements made at the Australian observatory Learmonth at 245 MHz. We show that the daily average flux for the period of observations at a frequency of ~161 MHz generally has values from 5 to 10 sfu.
solar flux, IISR, calibration, F10.7, Learmonth
1. Benz A.O., Monstein C., Meyer H. CALLISTO — A new concept for solar radio spectrometers. Solar Phys. 2005, vol. 226. pp. 143–151. DOI: 10.1007/s11207-005-5688-9.
2. Bilitza D. The importance of EUV indices for the International Reference Ionosphere. Phys. Chem. Earth (C). 2000, vol. 25. no. 5–6, pp. 515–521. DOI: 10.1016/S1464-1917(00)00068-4.
3. de Oliveira-Costa A., Tegmark M., Gaensler B.M., Jonas J., Landecker T.L, Reich P. A model of diffuse galactic radio emission from 10 MHz to 100 GHz. Mon. Not. R. Astron. Soc. 2008, vol. 388. pp. 247–260. DOI: 10.1111/j.1365-2966.2008.13376.x.
4. Dulk G.A., Suzuki S., Sheridan K.V. Solar noise storms: the polarization of storm Type III and related bursts. Astron. Astrophys. 1984, vol. 130, pp. 39–45.
5. Giersch O.D., Kennewell J. and Lynch M. Solar radio burst statistics and implications for space weather effects. Space Weather. 2017, vol. 15. no. 11. pp. 1511–1522. DOI: 10.1002/2017SW001658.
6. Iwai K., Tsuchiya F., Morioka A., Misawa H. IPRT/ AMATERAS: A new metric spectrum observation system for solar radio bursts. Solar Phys. 2012, vol. 277. pp. 447–457. DOI: 10.1007/s11207-011-9919-y.
7. Kondo T., Isobe T., Igi S., Watari S., Tokumaru M. Hiraiso Radio Spectrograph (HiRAS) for monitoring solar radio bursts. J. Communications Research Laboratory. 1995, vol. 42. no. 1, pp. 111–119.
8. Kontogeorgos A., Tsitsipis P., Caroubalos C., Moussas X., Preka-Papadema P., Hilaris A., et al. The improved ARTEMIS IV multichannel solar radio spectrograph of the University of Athens. Experimental Astronomy. 2006, vol. 21. pp. 41–55. DOI: 10.1007/s10686-006-9066-x.
9. Leblanc Y., Le Squeren A.M. Dimensions, Temperature and electron density of the quiet corona. Their variations during the solar cycle. Astron. Astrophys. 1969, vol. 1. pp. 239–248.
10. Liu H., Chen Y., Cho K., Feng S., Vasanth V., Koval A., et al. A solar stationary type IV radio burst and its radiation mechanism. Solar Phys. 2018, vol. 293. pp. 58. DOI: 10.1007/s11207-018-1280-y.
11. Muratova N.O., Muratov A.A., Kashapova L.K. Results of work of new spectropolarimeter for solar radio emission observations in the range 50–500 MHz. Solar-Terr. Phys. 2019, vol. 5. no. 3, pp. 3–9. DOI: 10.12737/stp-53201901.
12. Potekhin A.P., Medvedev A.V., Zavorin A.V., Kushnarev D.S., Lebedev V.P, Lepetaev V.V., Shpynev B.G. Recording and control digital systems of the Irkutsk Incoherent Scatter Radar. Geomagnetism and Aeronomy. 2009, vol. 49. no. 7, pp. 1011–1021. DOI: 10.1134/S0016793209070299.
13. Setov A.G., Globa M.V., Medvedev A.V., Vasilyev R.V., Kushnarev D.S. First results of absolute measurements of solar flux at the Irkutsk Incoherent Scatter Radar (IISR). Solar-Terr. Phys. 2018, vol. 4. no. 3, pp. 24–27. DOI: 10.12737/stp-43201804.
14. Shibasaki K., Alissandrakis C.E., Pohjolainen S. Radio emission of the quiet Sun and active regions (Invited Review). Solar Phys. 2011, vol. 273. pp. 309–337. DOI: 10.1007/ s11207-011-9788-4.
15. Tapping K.F. The 10.7 cm solar radio flux (F10.7). Space Weather. 2013, vol. 11. pp. 394–406. DOI: 10.1002/swe.20064.
16. Tsurutani B.T., Verkhoglyadova O.P., Mannucci A.J., Lakhina G.S, Li. G., Zank G.P. A brief review of “solar flare effects” on the ionosphere. Radio Sci. 2009, vol. 44. no. RS0A17. DOI: 10.1029/2008RS004029.
17. Vasilyev R.V., Globa M.V., Kushnarev D.S., Lebedev V.P., Medvedev A.V., Ratovsky K.G. Model of discrete cos¬mic radiosource signal for Irkutsk incoherent scatter radar. XXV Vserossijskaya otkrytaya konferentsiya «Rasprostranenie radiovoln» [XXV All-Russian Open Conference “Propagation of Radio Waves”]. Tomsk, 2016, vol. 3, pp. 122–125. (In Russian).
18. Vasilyev R.V., Kushnarev D.S., Kashapova L.K., Lebedev V.P., Medvedev A.V., Nevedimov N.I., Ratovsky K.G. First results of radio observations of the Sun and powerful discrete sources at Irkutsk Radar. Astronomicheskii zhurnal [Astron. Rep.], 2013, vol. 90. no. 11, pp. 948–958. (In Russian). DOI: 10.7868/S0004629913110078.
19. Verbanac G., Vršnak B., Temmer M., Mandea M., Korte M. Four decades of geomagnetic and solar activity: 1960–2001. J. Atm. Solar-Terr. Phys. 2010, vol. 72. pp. 607–616. DOI: 10.1016/j.jastp.2010.02.017.
20. Zhang J., Richardson I.G., Webb D.F. et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ –100 nT) during 1996–2005. J. Geophys. Res. 2007, vol. 112. no. A10102. DOI: 10.1029/2007JA012321.
21. Zirker J.B. Coronal holes and high-speed wind streams. Rev. Geophys. Space Phys. 1977, vol. 15. no. 3, pp. 257–269. DOI: 10.1029/RG015i003p00257.
22. URL: http://ckp-rf.ru/ckp/3056/ (accessed June 27, 2020).
23. URL: ftp://ftp-out.sws.bom.gov.au (accessed June 27, 2020).