Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Peculiarities of 557.7 and 630.0 nm emissions observed in the second step of the magnetic storm main phase at the mid-latitude observatory Tory (52° N, 103° E) on March 17, 2015 are compared with the changes in ionospheric parameters above this station, detected from ionospheric sounding data and total electron content maps. We have found that the intensity of the 557.7 and 630.0 nm emissions noticeably increased after the observatory entered into the longitudinal sector of the developed main ionospheric trough (MIT). The most powerful synchronous increases in intensities of the two emissions are associated with amplification of the westward electrojet during strengthening of the magnetospheric convection. We study the dependence of the ratios between the intensities of 630.0 nm emission recorded in the north, zenith, and south directions on the position of emitting regions relative to the MIT bottom. The SAR arc is shown to appear initially near the bottom of the MIT polar wall and approach the zenith of the station during registration of F3s reflections by an ionosonde, which indicate the presence of a polarization jet near the observation point.
second step of the magnetic storm main phase, 557.7 and 630.0 nm emissions, main ionospheric trough, polarization jet
1. Alekseev V.N., Velichko V.A., Nadubovich Yu.A. Study of the glow heights and the position of the southern boundary of the background glow of 6300 Å. Fizika verkhney atmosfery vysokikh shirot [Physics of the Upper Atmosphere of High Latitudes]. Yakutsk, YaB of SB AS USSR Publ., 1975, vol. 3, pp. 124–133. (In Russian).
2. Aruliah A., Förster M., Hood R., McWhirter I., Doornbos E. Comparing high-latitude thermospheric winds from Fabry–Perot interferometer (FPI) and challenging mini-satellite payload (CHAMP) accelerometer measurements. Ann. Geophys. 2019, vol. 37, pp. 1095–1120. DOI: 10.5194/angeo-37-1095-2019.
3. Balan N., Shiokawa K., Otsuka Y., Kikuchi T., Lekshmi D.V., Kawamura S., Yamamoto M., Bailey G.J. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. 2010, vol. 115, A02304. DOI: 10.1029/2009JA014515.
4. Bame S.J., Asbridgie J.R., Felthauseer H.E., Honesa E.W., Strong I.B. Characteristics of the plasma sheet in the Earth’s magnetotail. J. Geophys. Res. 1967, vol. 72, iss. 1, pp. 113–129. DOI: 10.1029/JZ072i001p00113.
5. BaumjohannW., Paschmann G., Cattell C.A. Average plasma properties in the central plasma sheet. J. Geophys. Res. 1989, vol. 94, iss. 6, pp. 6597–6606. DOI: 10.1029/JA094iA06p06597.
6. Blanc M., Richmond A.D. The ionospheric disturbance dynamo. J. Geophys. Res., 1980, vol. 85, iss. A4, pp. 1669–1686. DOI: 10.1029/JA085iA04p01669.
7. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of ionosphere]. Moscow, Nauka Publ., 1988, 528 p. (In Russian).
8. Chu X., Malaspina D., Gallardo-Lacourt B., Liang J., Andersson L., Ma Q., Artemyev A., Liu J., Ergun R.E., Thaller S., Akbari H., Zhao H., Larsen B., Reeves G., Wygant J., Breneman A., Tian S., Connors M., Donovan E., Archer W., MacDonald E.A. Identifying STEVE’s magnetospheric driver using conjugate observations in the magnetosphere and on the ground. Geophys. Res. Lett. 2019, vol. 46, iss. 22, pp. 12665–12674.
9. Deminov M.G. Ionosphere of the Earth: Features and Mechanisms. Elektromagnitnye i plazmennye protsessy ot nedr Solntsa do nedr Zemli. Yubileinyi sbornik IZMIRAN-75 [Electromagnetic and Plasma Processes from the Interior of the Sun to the Interior of the Earth. Jubilee Collection IZMIRAN-75]. Moscow, 2015, pp. 295–346. (In Russian).
10. Deminov M.G., Shubin V.N. Empirical model of the location of the main ionospheric trough. Geomagnetism and Aeronomy. 2018, vol. 58, iss. 3, pp. 338–347. DOI: 10.1134/S0016793218030064.
11. Ding G.-X., He F., Zhang X.-X., Chen B. A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI. J. Geophys. Res. 2017, vol. 122, pp. 2162–2173. DOI: 10.1002/2016JA023295.
12. Feldstein Y.I., Vorobjev V.G., Zverev V.L. Planetary features of aurorae: Results of the IGY (a review). Geomagnetism and Aeronomy. 2010, vol. 50, no. 4, pp. 413–435. DOI: 10.1134/ S0016793210040018.
13. Feldstein Y.I., Vorobjev V.G., Zverev V.L., Förster M. Investigations of the auroral luminosity distribution and the dynamics of discrete auroral forms in a historical retrospective. History Geo- Space Sci. 2014, vol. 5, pp. 81–134. DOI: 10.5194/hgss-5-81-2014.
14. Filippov V.M., Shestakova L.V., Galperin Y.I. Fast ion drift band in the subauroral F-region and its manifestation in the structure of the high-latitude ionosphere. Kosmicheskie issledovaniya [Cosmic Research]. 1984, vol. 27, no. 4, pp. 557–564. (In Russian).
15. Foster J.C., Buonsanto M.J., Mendillo M., Nottingham D., Rich F.J., Denig W. Coordinated stable auroral red arc observations: Relationship to plasma convection. J. Geophys. Res. 1994, vol. 99, pp. 11,429–11,439.
16. Frey H.U. Localized aurora beyond the auroral oval. Rev. Geophys. 2007, vol. 45, RG1003. DOI: 10.1029/2005RG000174.
17. Gonzalez W.D., Tsurutani B.T., Lepping R.P., Schwenn R. Interplanetary phenomena associated with very intense geomagnetic storms. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, pp. 173–181.
18. Gussenhoven M.S., Hardy D.A., Heinemann N. Systematics of the equatorward diffuse auroral boundary. J. Geophys. Res. 1983, vol. 88, iss. A7, pp. 5692–5708.
19. Hairston M., Coley W.R., Stoneback R. Responses in the polar and equatorial ionosphere to the March 2015 St. Patrick Day storm. J. Geophys. Res. 2016, vol. 121, pp. 11,213–11,234. DOI: 10.1002/2016JA023165.
20. He M., Liu L., Wan W., Zhao B. A study on the nighttime midlatitude ionospheric trough. J. Geophys. Res., 2011, vol. 116, iss. A5, A05315. DOI: 10.1029/2010JA016252.
21. Hong J., Kim Y.H., Kam H.., Chung J.-K., Park J., Kim J.-H., Mendillo M. Simultaneous observations of SAR arc and its ionospheric response at subauroral conjugate points (L≈2.5) during the St. Patrick’s Day Storm in 2015. J. Geophys. Res. 2020, vol. 124, iss. 4. DOI: 10.1029/2019JA027321.
22. Ievenko I.B., Alekseev V.N. Effect of the substorm and storm on the sar arc dynamics: A statistical analysis. Geomagnetism and Aeronomy. 2004, vol. 44, no. 5, pp. 592–603.
23. Ievenko I.B., Parnikov S.G., Alexeyev V.N. Relationship ofthe diffuse aurora and SAR arc dynamics to substorms and storms. Adv. Space Res. 2008, vol. 41, no. 8, pp. 1252–1260. DOI: 10.1016/j.asr.2007.07.030.
24. Ievenko I.B., Parnikov S.G. Ground-based and satellite observations of the SAR-arc in the MLT evening sector at the beginning of the magnetic storm on March 17, 2015. Geomagnetism and Aeronomy. 2020, vol. 60, no 6, pp. 737–746. DOI: 10.1134/S0016793220050096.
25. Jacobsen K.S., Andalsvik Y.L. Overview of the 2015 St. Patrick’s Day storm and its consequences for RTK and PPP positioning in Norway. J. Space Weather Space Climate. 2016, vol. 6, A9. DOI: 10.1051/swsc/2016004.
26. Keika K., Nakamura R., Baumjohann W., Angelopoulos V., Chi P.J., Glassmeier K.H., Fillingim M., Magnes W., Auster H.U., Fornacon K.H., Reeves G. D., Yumoto K., Lucek E.A., Carr C.M., Dandouras I. Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause. J. Geophys. Res. 2009, vol. 114, A00C24. DOI: 10.1029/2008JA013445.
27. Khalipov V.L., Sivtseva L.D., Filippov V.M., Stepanov A.E., Nikolaenko L.M., Bosqued J.M., Beghin C. Step-like profiles of electron density in the subauroral lower F-region in the morning sector and possible mechanisms of their formation during substorms: the comparison of data of ground-based ionosondes with the AUREOL-3 satellite measurements. Results of the ARCAD 3 project and of the recent programmes in magnetospheric and ionospheric physics, Toulouse, 1984. Toulouse, Cepadues-editions, 1985, pp. 895–916.
28. Khalipov V.L., Stepanov A.E., Ievenko I.B., Kotova G.A., Panchenko V.A. Formation of red arc in the polarization jet band. J. Atmos. Solar-Terr. Phys. 2018, vol. 179, pp. 494–503. DOI: 10.1016/j.jastp.2018.08.005.
29. Khomich V.Yu., Semenov A.I., Shefov N.N. Airglow as an Indicator of Upper Atmospheric Structure and Dynamics. Springer-Verlag Berlin Heidelberg, 2008, 756 p.
30. Kosar B.C., MacDonald E.A., Case N.A., Zhang Y., Mitchell E.J., Viereck R. A case study comparing citizen science aurora data with global auroral boundaries derived from satellite imagery and empirical models. J. Atmos. Solar-Terr. Phys. 2018, vol. 177, pp. 274–282. DOI: 10.1016/j.jastp.2018.05.006.
31. Le G., Lühr H., Anderson B.J., Strangeway R.J., Russell C.T., Singer H., Slavin J.A., Zhang Y., Huang T., Bromund K., Chi P.J., Lu G., Fischer D., Kepko E.L., Leinweber H.K., Magnes W., Nakamura R., Plaschke F., Park J., Rauberg J., Stolle C., Torbert R.B. Magnetopause erosion during the March 17, 2015 magnetic storm: Combined field-aligned currents, auroral oval, and magnetopause observations. Geophys. Res. Lett. 2016, vol. 43, iss. 4, pp. 2396–2404. DOI: 10.1002/ 2016GL068257.
32. McPherron R.L. The use of ground magnetograms to time the onset of magnetospheric substorms. Journal of Geomagnetism and Geoelectricity. 1978, vol. 30, pp.149–163.
33. Megan Gillies D., Knudsen D., Donovan E., Jackel B., Gillies R., Spanswick E. Identifying the 630 nm auroral arc emission height: A comparison of the triangulation, FAC profile, and electron density methods. J. Geophys. Res. 2017, vol. 122, pp. 8181–8197. DOI: 10.1002/2016JA023758.
34. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, iss. 4, RG4001. DOI: 10.1029/2005RG000193.
35. Mendillo M., Baumgardner J., Wroten J., Martinis C., Smith S., Merenda K.D., Fritz T., Hairston M., Heelis R., Barbieri C. Imaging magnetospheric boundaries at ionospheric heights. J. Geophys. Res. 2013, vol. 118, iss. 11, pp. 7294–7305. DOI: 10.1002/2013JA019267.
36. Mendillo M., Finan R., Baumgardner J., Wroten J., Martinis C., Casillas M. A stable auroral red (SAR) arc with multiple emission features. J. Geophys. Res. 2016, vol. 121, pp. 10,564–10,577. DOI: 10.1002/2016JA023258.
37. Meurant M., Gerard J.-C., Blockx C., Hubert B., Coumans V. Propagation of electron and proton shock-induced aurora and the role of the interplanetary magnetic field and solar wind J. Geophys. Res. 2004, vol. 109, A10210. DOI: 10.1029/2004JA010453.
38. Mikhalev A.V. Mid-latitude aurora in solar cycles 23–24 from observations in the south of Eastern Siberia. Solar-Terr. Phys. 2019, vol. 5, iss. 4, pp. 66–73. DOI: 10.12737/stp-54201909.
39. Mikhalev A.V., Beletsky A.B., Vasilyev R.V., Zherebtsov G.A., Podlesny S.V., Tashchilin M.A., Artamonov M.F. Spectral and photometric characteristics of mid-latitude auroras during the magnetic storm of March 17, 2015. Solar-Terr. Phys. 2018, vol. 4, iss. 4, pp. 42–47. DOI: 10.12737/stp-44201806.
40. Mishin V.V., Lunyushkin S.B., Mikhalev A.V., Klibanova Yu.Yu., Tsegmed B., Karavaev Yu.A., Tashchilin A.V., Leonovich L.A., Penskikh Yu.V. Extreme geomagnetic and optical disturbances over Irkutsk during the 2003 November 20 superstorm. J. Atmos. Solar-Terr. Phys. 2018, vol. 181, pt. A, pp. 68–78. DOI: 10.1016/j.jastp.2018.10.013.
41. Moldwin M.B., Downward L., Rassoul H.K., Amin R.R., Anderson R.R. A new model of the location of the plasmapause: CRRES results. J. Geophys. Res. 2002, vol. 107, iss. A11, pp. SMP 2-1–SMP 2-9. DOI: 10.1029/2001JA009211.
42. Nagai T., Baker D.N., Higbie P.R. Development of substorm activity in multiple-onset substorms at synchronous orbit. J. Geophys. Res. 1983, vol. 88, iss. A9, pp. 6994–7004.
43. Newell P.T., Sotirelis T., Wing S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J. Geophys. Res. 2009, vol. 114, A09207. DOI: 10.1029/2009JA014326.
44. Ni B., Thorne R.M. Zhang X., Bortnik J., Pu Z., Xie L., Hu Z., Han D., Shi R., Zhou C., Gu X. Origins of the Earth’s Diffuse Auroral Precipitation. Space Sci Rev. 2016, vol. 200, pp. 205–259. DOI: 10.1007/s11214-016-0234-7.
45. Podlesnyi A.V., Brynko I.G., Kurkin V.I., Berezovsky V.A., Kiselyov A.M., Petuchov E.V.Multifunctional chirp ionosonde for monitoring the ionosphere. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, iss. 4, pp. 24–31. Available at: http://vestnik.geospace.ru/index.php?id=166 (Accessed 10 November 2020). (In Russian).
46. Polekh N., Zolotukhina N., Kurkin V., Zherebtsov G., Shi J., Wang G., Wang Z. Dynamics of ionospheric disturbances during the 17–19 March 2015 geomagnetic storm over East Asia. Adv. Space Res. 2017, vol. 60, iss. 11, pp. 2464–2476. DOI: 10.1016/j.asr.2017.09.030.
47. Polekh N.M., Zolotukhina N.A., Romanova E.B., Ponomarchuk S.N., Kurkin V.I., Podlesnyi A.V. Ionospheric effects of magnetospheric and thermospheric disturbances on March 17–19, 2015. Geomagnetism and Aeronomy. 2016, vol. 56, no. 5, pp. 557–571. DOI: 10.1134/S0016793216040174.
48. Pryse S.E., Kersley L., Malan D., Bishop G.J. Parameterization of the main ionospheric trough in the European sector. Radio Sci. 2006, vol. 41, RS5S14. DOI: 10.1029/2005RS003364.
49. Rassoul H.K., Rohrbaugh R.P., Tinsley B.A., Slater D.W. Spectrometric and photometric observations of low-latitude aurorae. J. Geophys. Res. 1993, vol. 98, iss. A5, pp. 7695–7709. DOI: 10.1029/92JA02269.
50. Sazykin S., Fejer B.G., Galperin Yu.I., Zinin L.V., Grigoriev S.A., Mendillo M. Polarization jet events and excitation of weak SAR arcs. Geophys. Res. Lett. 2002, vol. 29, iss. 12, pp. 26-1–26-4. DOI: 10.1029/2001GL014388.
51. Shinbori A., OtsukaY., Tsugawa T., Nishioka M., Kumamoto A., Tsuchiya F., Matsuda S., Kasahara Y., Matsuoka A., Ruohoniemi J.M., Shepherd S.G., Nishitani N. Temporal and spatial variations of storm time midlatitude ionospheric trough based on global GNSS-TEC and Arase satellite observations. Geophys. Res. Lett. 2018, vol. 45, pp. 7362–7370. DOI: 10.1029/2018GL078723.
52. Shiokawa K., Ogawa T., Kamide Y. Low-latitude auroras observed in Japan: 1999–2004. J. Geophys. Res. 2005, vol. 110, A05202. DOI: 10.1029/2004JA010706.
53. Shindin A.V., Klimenko V.V., Kologin D.A., Beletsky A.B., Grach S.M., Nasyrov I.A., Sergeev E.N. Spatial characteristics of the 630-nm artificial airglow generation region during the Sura facility pumping. Radiophysics and Quantum Electronics. 2018, vol. 60, no. 11, pp. 849–865. DOI: 10.1007/s11141-018-9852-0.
54. Suzuki H., Chino H., Sano Y., Kadokura A., Ejiri M.K., Taguchi M. Imaging-based observations of low-latitude auroras during 2001–2004 at Nayoro, Japan. Earth, Planets and Space. 2015, vol. 67, 107. DOI: 10.1186/s40623-015-0278-z.
55. Starkov G.V. Planetarnaya dinamika avroral'nogo svecheniya. Fizika okolozemnogo kosmicheskogo prostranstva. T. 1 [Planetary Dynamics of the Aurora. Physics of Near-Earth Space. Vol. 1]. Apatity, Publishing House of the Kola Scientific Center of RAN, 2000, 706 p. (In Russian).
56. Stepanov A.E., Khalipov V.L., Golikov I.A., Bondar E.D. Polyarizatsionnyi dzhet: uzkie i bystrye dreify subavroral'noi ionosfernoi plazmy [Polarization Jet: Narrow and Fast Drifts of Subauroral Ionospheric Plasma]. Yakutsk, Publishing House of the NEFU, 2017, 176 p. (In Russian).
57. Tashchilin A.V., Leonovich L.A. Modeling nightglow in atomic oxygen red and green lines under moderate disturbed geomagnetic conditions at midlatitudes. Solar-Terr. Phys. 2016, vol. 2, iss. 4, pp. 94–106. DOI: 10.12737/24276.
58. Tsurutani B.T., Lakhina G.S., Verkhoglyadova O.P., Gonzalez W.D., Echer E., Guarnieri F.L. A review of interplanetary discontinuities and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 5–19. DOI: 10.1016/j.jastp.2010.04.001.
59. Vasilyev R.V., Artamonov M.F., Beletsky A.B., Zherebtsov G.A., Medvedeva I.V., Mikhalev A.V., Syrenova T.E. Registering upper atmosphere parameters in East Siberia with Fabry—Perot Interferometer KEO Scientific “Arinae”. Solar-Terr. Phys. 2017, vol. 3, iss. 3, pp. 61–75. DOI: 10.12737/stp-33201707.
60. Zherebtsov G.A., Pirog O.M., Razuvayev O.I. The high- latitude ionosphere structure and dynamics. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomanetism, Aeronomy and Solar Physics]. 1986, iss. 76, pp. 165–177. (In Russian).
61. Zolotukhina N.A., Kurkin V.I., Polekh N.M., Romanova E.B. Backscattering dynamics during intense geomagnetic storm as deduced from Yekaterinburg radar data: 17–22 March 2015. Solar-Terr. Phys. 2016, vol. 2, iss. 4, pp. 31–54. DOI: 10.12737/24272.
62. Zolotukhina N., Polekh N., Kurkin V., Rogov D., Romanova E., Chelpanov M. Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 March 2015. J. Geophys. Res. 2017, vol. 122, pp. 2484–2504. DOI: 10.1002/2016JA023180.
63. Zverev V.L., Feldstein Y.I., Vorobjev V.G. Auroral glow equatorward from the auroral oval. Geomagnetism and Aeronomy. 2012, vol. 52, no. 1, pp. 60–67. DOI: 10.1134/S0016793212010173.
64. URL: https://www.swpc.noaa.gov/noaa-scales-explanation (accessed April 2, 2021).
65. URL: https://www.intermagnet.org/data-donnee/download-eng.php (accessed October 16, 2015).
66. URL: ftp.swpc.noaa.gov/pub/warehouse (accessed October 15, 2015).
67. URL: https://www.ngdc.noaa.gov/stp/ovation_prime/data (data obrascheniya March 20, 2020).
68. URL: http://ckprf.ru/ckp/3056 (accessed April 15, 2015).
69. URL: www.intermagnet.org (accessed March 21, 2015).
70. URL: http://cdaweb.gsfc.nasa.gov/istp_public (accessed July 15, 2015).