Kaliningrad, Kalinigrad, Russian Federation
WD IZMIRAN
Kaliningrad, Russian Federation
Immanuel Kant Baltic Federal University
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
The paper presents the results of observations of the sporadic Es layer during the period of meteorological disturbances in Kaliningrad in October 2017 and 2018 under quiet geomagnetic conditions. During the meteorological storms (October 29–30, 2017 and October 23–24, 2018), significant changes occurred in the dynamics of the Es-layer critical frequency. Observations of atmospheric and ionospheric disturbances in the Kaliningrad region show that the delay between the ionospheric response and the moment of maximum disturbances in atmospheric parameters is about 3 hours. These phenomena at the heights of the E-region might have been caused by propagation of acoustic-gravity waves generated by convective processes in the lower atmosphere during periods of a meteorological storm. Intensification of turbulent processes in the lower thermosphere leads to an increase in the atmospheric density and, accordingly, to higher recombination rates. This leads to a rapid decrease in the concentration of ions and, consequently, to a decrease in the critical frequency of the sporadic layer below the sensitivity threshold of ionosondes.
sporadic E layer, acoustic-gravity waves, atmosphere-ionosphere coupling, meteorological disturbances
1. Barta V., Haldoupis C., Sátori G., Buresova D., Chum J., Pozoga M., et al. Searching for effects caused by thunderstorms in midlatitude sporadic E layers. J. Atmos. Solar-Terr. Phys. 2017, vol. 161, pp. 150–159. DOI: 10.1016/j.jastp.2017.06.006.
2. Bogdanov V., Kaysin A., Romanov A. Impact of cyclones over Kamchatka on electron distribution in the ionosphere. E3S Web of Conferences. 2016, vol. 11, no. 00003. DOI: 10.1051/ e3sconf/20161100003.
3. Borchevkina O.P., Karpov I.V. Ionospheric irregularities in periods of meteorological disturbances. Geomagnetism and Aeronomy. 2017, vol. 57, no. 5, pp. 624–629. DOI: 10.1134/ S0016793217040041.
4. Bourdillon A., Lefur E., Haldoupis C., Le Roux Y., Menard J., Delloue J. Decameter mid-latitude sporadic-E irregularities in relation with gravity waves. Ann. Geophys. 1997, vol. 15, pp. 925–934. DOI: 10.1007/s00585-997-0925-1.
5. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the Ionosphere]. Moscow, Nauka Publ., 1988, 528 p. (In Russian).
6. Chernigovskaya M.A., Kurkin V.I., Oinats A.V., Poddelsky I.N. Ionosphere effects of tropical cyclones over the Asian region of Russia according to oblique radio-sounding data. Proc. SPIE 9292 — The International Society for Optical Engineering. 2014, vol. 92925E. DOI: 10.1117/12.2073391.
7. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G. Meteorological effects of ionospheric disturbances from vertical radio sounding data. J. Atmos. Solar-Terr. Phys. 2015, vol. 136(B), pp. 235–243. DOI: 10.1016/j.jastp.2015.07.006.
8. Didebulidze G. G., Dalakishvili G., Lomidze L., Matiashvili G. Formation of sporadic-E (Es) layers under the influence of AGWs evolving in a horizontal shear flow. J. Atmos. Solar-Terr. Phys. 2015, vol. 136(B), pp. 163–173. DOI: 10.1016/ j.jastp.2015.09.012.
9. Fukao S., Yamamoto M., Tsunoda R. T., Hayakawa H., Mukai T. The SEEK (Sporadic-E Experiment over Kyushu) Campaign. Geophys. Res. Lett. 1998, vol. 25, no. 11, pp. 1761–1764. DOI: 10.1029/98GL00932.
10. Haldoupis C. Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci. Rev. 2012, vol. 168, no. 1-4, pp. 441–461. DOI: 10.1007/s11214-011-9786-8.
11. Haldoupis C., Meek C., Christakis N., Pancheva D., Bourdillon A. Ionogram height-time-intensity observations of descending sporadic E layers. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, iss. 3-5, pp. 539–557. DOI: 10.1016/j.jastp.2005.03.020.
12. Karpov I.V., Kshevetskii S.P. Formation of large-scale disturbances in the upper atmosphere caused by acoustic gravity wave sources on the Earth’s surface. Geomagnetism and Aeronomy. 2014, vol. 54, no. 4, pp. 513–522. DOI: 10.1134/ S0016793214040173.
13. Karpov I.V., Kshevetskii S.P. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth’s surface and influence of this heating on the wave propagation conditions. J. Atmos. Solar-Terr. Phys. 2017, vol. 164, pp. 89–96. DOI: 10.1016/ j.jastp.2017.07.019.
14. Karpov I.V., Borchevkina O.P., Dadashev R.Z., Ilminskaya A.V. Influence of meteorological storms on ionospheric parameters in the Baltic region in 2010. Solar-Terr. Phys. 2016, vol. 2, no. 2, pp. 77–81. DOI: 10.12737/21001.
15. Karpov I.V., Borchevkina O.P., Karpov M.I. Local and regional ionospheric disturbances during meteorological disturbances. Geomagnetism and Aeronomy. 2019, vol. 59, no. 4, pp. 458–466. DOI: 10.1134/S0016793219040108.
16. Kazimirovsky E., Herraiz M., Morena A.D.L.B. Effects on the ionosphere due to phenomena occurring below it. Surveys in Geophysics. 2003, vol. 24, iss. 2, pp. 139–184. DOI: 10.1023/ A:1023206426746.
17. Khromov S. P., Mamontova L. I. Meteorologicheskii slovar [Meteorological Dictionary]. Leningrad, Hydrometeo-izdat Publ., 1974, 568 p. (In Russian).
18. Koucká Knížová P., Mošna Z., Kouba D., Potužníková K., Boška J. Influence of meteorological systems on the ionosphere over Europe. J. Atmos. Solar-Terr. Phys. 2015, vol. 136, pp. 244–250. DOI: 10.1016/j.jastp.2015.07.017.
19. Kunitsyn V.E., Suraev S.N., Akhmedov, R.R. Modeling the propagation of acoustic gravity waves in the atmosphere for different surface sources. Vestnik Moskovskogo universiteta. Ser. Fizika. Asronomiya [Moscow University Physics Bulletin]. 2007, iss. 3, no. 2, pp. 59–63. (In Russian).
20. Laštovička J. Forcing of the ionosphere by waves from below. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, no. 3, pp. 479–497. DOI: 10.1016/j.jastp.2005.01.018.
21. Liperovsky V.A., Pokhotelov E.V., Liperovskaya E.V., Parrot M., Meister C.-V., Alimov O.A. Modification of sporadic E-layers caused by seismic activity. Surveys in Geophys. 2000, vol. 21, pp. 449–486. DOI: 10.1023/A:1006711603561.
22. Martinis C.R., Manzano. J.R. The influence of active meteorological systems on the ionosphere F region. Ann. Geophys. 1999, vol. 42, no. 1, pp. 1–7. DOI: 10.4401/ag-3708.
23. Mathews J.D., Sporadic E: current views and recent progress. J. Atmos. Solar-Terr. Phys. 1998, vol. 60, iss. 4, pp. 413–435. DOI: 10.1016/S1364-6826(97)00043-6.
24. Parkinson M.L., Dyson P.L. Measurements of mid-latitude E-region, sporadic-E, and TID-related drifts using HF Doppler-sorted interferometry. J. Atmos. Solar-Terr. Phys. 1998, vol. 60, iss. 5, pp. 509–522. DOI: 10.1016/S1364-6826(97)00058-8.
25. Pignalberi A., Pezzopane M., Zuccheretti E. Sporadic E layer at mid-latitudes: average properties and influence of atmospheric tides. Ann. Geophysic. 2014, vol. 32, iss. 11, pp. 1427–1440. DOI: 10.5194/angeo-32-1427-2014.
26. Pilipenko S. G., Kozak L. V. Wind shifts in the Earth’s atmosphere over powerful hurricanes. Kosmicheskaya nauka i tekhnologiya [Space Science and Technology]. 2012, vol. 18, no. 6, pp. 43–50. DOI: 10.15407/knit2012.06.043. (In Russian).
27. Polyakova A.S., Perevalova N.P. Comparative analysis of TEC disturbances over tropical cyclone zones in the North-West Pacific Ocean. Adv. Space Res. 2013, vol. 52, iss. 8, pp. 1416−1426. DOI: 10.1016/j.asr.2013.07.029.
28. Šauli P., Bourdillon A. Height and critical frequency variations of the sporadic-E layer at midlatitudes. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, iss. 15, pp. 1904–1910. DOI: 10.1016/ j.jastp.2008.03.016.
29. Schubert G., Hickey M.P., Walterscheid R.L., Physical processes in acoustic wave heating of the thermosphere. J. Geophys. Res. 2005, vol. 110, pp. D07106. DOI: 10.1029/2004 JD005488.
30. Scotto C., Sporadic-E layer and meteorological activity. Ann. Geophyse. 1995, vol. 38, no. 1, pp. 21–24. DOI: 10.4401/ag-4129.
31. Snively J.B., Pasko V.B. Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys. Res. Lett. 2003, vol. 30, iss. 24, pp. 2254. DOI: 10.1029/2003GL018436.
32. Tupikin S.N. Structural analysis of storm winds in the South-Eastern Baltic and the Kaliningrad region. Kompleksnoe izuchenie basseina Atlanticheskogo okeana: Sb. nauchnykh trudov [Proc. “Comprehensive Study of the Atlantic Ocean Basin”]. Kaliningrad, 2003, pp. 59–63. (In Russian).
33. van Eyken A.P., Williams P.J.S., Maude A.D., Morgani G. Atmospheric gravity waves and sporadic-E. J. Atmos. Solar-Terr. Phys. 1982, vol. 44, iss. 1, pp. 25–29. DOI: 10.1016/0021-9169(82)90089-7.
34. Zakharov V.I., Kunitsyn V.E. Regional features of atmospheric manifestations of tropical cyclones according to ground-based GPS network data. Geomagnetism and Aeronomy. 2012, vol. 52, no. 4, pp. 533–545. DOI: 10.1134/S0016793212040160.
35. URL: https://rp5.ru (accessed September 16, 2019).