HYDROCHEMICAL CHARACTERISTICS AND IRRIGATION QUALITY OF GROUNDWATER IN THE SOSNOVSKIY DISTRICT OF THE CHELYABINSK REGION
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. The purpose of the study was to assess the quality of groundwater used for irrigation of individual plots of land, belonging to the residents of the Sosnovskiy district of the Chelyabinsk region. Material: 73 samples taken in wells and boreholes on the territory of private land plots, villages, villa communities and garden non-profit partnerships. Methods: 30 indicators of water composition were determined (common indicators – 6, major ions and carbonate ion – 8, compounds of nitrogen, phosphorus and organic matter – 5, heavy metals and silicon – 11) using capillary electrophoresis, atomic absorption, potentiometry, spectrophotometry and conductometry. Statistical analysis included: estimation of means with 95 % confidence intervals (95 % CI) calculated by bootstrap (Kaplan – Meier method was used for censored observations), relative frequencies (in percent) with 95 % CI (Jeffreys method and simultaneous CI by Wilson). Data was visualized using Piper’s and Gibbs’ diagrams. Software: PAST, Scout 2008, R, DescTool, GW_Chart, KyPlot, QGIS. Results. On the territory of the Sosnovsky district of the Chelyabinsk region, (Ca2+–Mg2+ and HCO3––CO32–) type groundwater prevails with a pH 7.39 (95 % CI: from 7.30 to 7.48) and a TDS 651 mg/dm3 (95 % CI: from 598 to 720). Using Piper and Gibbs diagrams, it was established that the leading processes of the water chemical composition formation are: 1) the dissolution of the calcite-dolomite series’ minerals of sedimentary rocks, 2) the dissolution and the ion exchange of feldspars in the composition of granites with calcite. For mineralization and risks of chloride salinization, sodium salinization, magnesium salinization and soda formation, the proportion of samples with quality for irrigation purposes I and II category is 65.7 %. There are excesses of standards in the concentration of NO3- (24.7 % of samples), Ba (68.3 %), Cd (30.4 %), Fe (15.3 %), Mn (12.9 %), Pb (6.3 %).

Keywords:
groundwater, chemical composition, Piper diagram, Gibbs diagram, hydrogeochemical processes, irrigation, quality
Text
Publication text (PDF): Read Download
References

1. Breslavskiy A. S. Vremya izuchat' prigorody // Vestnik RUDN. Seriya: Sociologiya. 2017. T. 17. № 2. S. 636–644. DOI: 10.22363/2313-2272-2017-17-4-636–644.

2. Rusanov A. V. Suburbanizaciya i zhilischnoe stroitel'stvo v Moskovskoy oblasti // Narodonaselenie. 2017. № 2. S. 103–111.

3. Nikitina T. I. Vliyanie demograficheskoy situacii na uroven' ustoychivogo razvitiya sel'skih territoriy Chelyabinskoy oblasti // Vestnik Kurskoy gosudarstvennoy sel'skohozyaystvennoy akademii. 2018. № 8. S. 273–278.

4. Investicionnyy pasport rayona 2018 god [Elektronnyy resurs] // Oficial'nyy sayt Sosnovskogo municipal'nogo rayona Chelyabinskoy oblasti. URL: http://www.chelsosna.ru (data obrascheniya: 10.04.2020).

5. Rounds S. Alkalinity Calculator [e-resource] // USGS Oregon Water Science Center. 2013. URL: http://or.water.usgs.gov/alk/alk.html (appeal date: 05.03.2020).

6. GOST R 51309-99 Voda pit'evaya. Opredeleniya soderzhaniya elementov metodami atomnoy spektrometrii. Moskva: Standartinform, 2010. 42 s.

7. Hammer O., Harper D. A. T, Ryan P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. 2001. No. 1. Pp. 1–9.

8. Zimmerman J.Y. Abstract Scout [e-resource] / EPA: National Exposure Research Laboratory Environmental Sciences. URL: https://archive.epa.gov/esd/archive-scout/web/html (appeal date: 02.04.2020).

9. Nocerino J., Singh A., Maichle R., Armbya N., Singh A. K. Scout 2008 Version 1.0. User Guide Part I. Washington: U.S. Environmental Protection Agency, 2008. 244 p.

10. Rukovodstvo po kontrolyu i regulirovaniyu pochvennogo plodorodiya oroshaemyh zemel' / Pod red. V. N. Schedrina. Novocherkassk: RosNIIPM, 2017. 141 s.

11. Signorell A., et al. DescTools: Tools for Descriptive Statistics. R package version 0.99.34 ot 12.03.2020 [e-resource]. URL: https://cran.r-project.org/package=DescTools (appeal date: 10.04.2020).

12. R Core Team. R: A language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing, 2016 [e-resource]. URL: https://www.R-project.org (appeal date: 10.04.2020).

13. Winston R. B. Graphical User Interface for MODFLOW, Version 4: U. S. Geological Survey Open-File Report 00-315, 2000. 27 p.

14. Yoshioka K. KyPlot – A user-oriented tool for statistical data analysis and visualization. Computional Statistics. 2002. Vol. 17. No. 3. Pp. 425–437.

15. Osnovy gidrogeologii. Gidrogeohimiya / Pod red. S. L. Shvarceva. Novosibirsk: Nauka, 1982. 288 s.

16. Piper A. M. A graphic procedure in geochemical interpretation of water analyses // Transactions of the American Geophysical Union. 1944. Vol. 25. Pp. 914–923.

17. Durov S. A. Klassifikaciya prirodnyh vod i graficheskoe izobrazhenie ih sostava // Doklady AN SSSR. 1948. T. 59. № 1. S. 87–90.

18. Ravikumar P., Somashekar R. K., Prakash K. L. A comparative study on usage of Durov and Piper diagrams to interpret hydrochemical processes in groundwater from SRLIS river basin, Karnataka, India // Elixir international journal. Earth Science. 2015. Vol. 80. Pp. 31073–31077.

19. Obeidat A. M., Rimawi O. Characteristics and genesis of the groundwater resources associated with oil shale deposits in the Azraq and Harrana Basins, Jordan // Journal of Water Resource and Protection. 2017. Vol. 9. Pp. 121–138. DOI: 10.4236/jwarp.2017.92010.

20. Ziani D., Abderrahmane B., Boumazbeur A., Benaabidate L. Water quality assessment for drinking and irrigation using major ions chemistry in the semiarid region: case of Djacer Spring, Algeria // Asian Journal of Earth Sciences. 2017. Vol. 10. No. 1. Pp. 9–21. DOI: 10.3923/ajes.2017.9.21.

21. Nyika J., Onyari E. Hydrogeochemical analysis and spatial distribution of groundwater quality in Roundhill landfill vicinity of South Africa // Air, Soil and Water Research. 2019. Vol. 12. Pp. 1–8. DOI: 10.1177/1178622119872771.

22. Hounslow A. Water Quality Data: Analysis and Interpretation. CRC Press, 1995. 416 p.

23. Gibbs R. J. Mechanisms Controlling World Water Chemistry // Science, New Series. 1970. Vol. 170. No. 3962. P. 1088–1090.

24. Marandi A., Shand P. Groundwater chemistry and the Gibbs Diagram // Applied Geochemistry. 2018. Vol. 97. Pp. 209–2012. DOI: 10.1016/j.apgeochem.2018.07.00.

25. Huizenga J. M. Characterisation of the inorganic chemistry of surface waters in South Africa // Water SA. 2011. Vol. 37. No. 3. Pp. 401–410. DOI: 10.4314/wsa.v37i3.68491.

26. Kukarin V. V., Burov A. G., Serebrovskiy A. A., Kozhevnikov A. M., Aristov A. N. Shema territorial'nogo planirovaniya (korrektirovka) Sosnovskogo municipal'nogo rayona Chelyabinskoy oblasti. Poyasnitel'naya zapiska // Materialy po obosnovaniyu shemy territorial'nogo planirovaniya. Chelyabinsk: PK «Golovnoy proektnyy institut Chelyabinskgrazhdanproekt», 2014. 106 s.

27. Afonin V. I., Korshunkov I. N. Encilopediya Chelyabinsk [Elektronnyy resurs] // Vody poverhnostnye i podzemnye. URL: http://www.book-chel.ru/ind.php?what=card&id=4867 (data obrascheniya: 10.04.2020)

28. Solodkiy N. F., Shamrikov A. S., Pogrebenkov V. M. Mineral'no-syr'evaya baza Urala dlya keramicheskoy, ogneupornoy i stekol'noy promyshlennosti: spravochnoe posobie / Pod red. prof. G. N. Maslennikovoy. Tomsk: Izd-vo TPU, 2009. 332 s.

29. Shkuratova I. A., Donnik I. M., Trapeznikov A. V., Isaeva A. G. Vereschak N. A., Krivonogova A. S., Baranova A. A. Metodologiya ekologicheskogo monitoringa agrarnyh predpriyatiy v zone Urala // Agrarnyy vestnik Urala. 2012. T. 94. № 2. S. 60–62.

Login or Create
* Forgot password?