Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
The ground-based automatic method for determining auroral oval (AO) boundaries developed by the authors [Lunyushkin, Penskikh, 2019] has been modified and expanded to the Southern Hemisphere. Input data of the method contains large-scale distributions of the equivalent current function and field-aligned current density calculated in the polar ionospheres of two hemispheres in a uniform ionospheric conductance approximation based on the magnetogram inversion technique and the geomagnetic database of the world network of stations of the SuperMAG project. The software implementation of the method processes large volumes of time series of input data and produces coordinates of the main boundaries of AO in both hemispheres: the boundaries of the ionospheric convection reversal, the AO polar and equatorial boundaries, the lines of maximum density of field-aligned currents and auroral electrojets. The automatic method reduces the processing time for a given amount of data by 2–3 orders of magnitude (up to minutes and hours) compared to the manual method, which requires weeks and months of laborious operator work on the same task, while both methods are comparable in accuracy. The automatic geomagnetic method has been tested for diagnostics of AO boundaries during the isolated substorm of August 27, 2001, for which the expected synchronous dynamics of polar caps in two hemispheres has been confirmed. We also show the AO boundaries identified are in qualitative agreement with simultaneous AO images from the IMAGE satellite, as well as with the results of the OVATION and APM models; the boundary of ionospheric convection reversal, determined by the geomagnetic method in two hemispheres, is consistent with the maps of the electric potential of the ionosphere according to the SuperDARN-RG96 model.
equivalent current function, convection reversal boundary, magnetogram inversion technique, field-aligned currents, auroral oval boundaries
1. Akasofu S.-I. Polar and Magnetospheric Substorms. Dordrecht, Springer Netherlands, 1968, 292 p. DOI: 10.1007/978-94-010-3461-6.
2. Akasofu S.-I. Physics of Magnetospheric Substorms. Dordrecht, Springer Netherlands, 1977, 619 p. DOI: 10.1007/978-94-010-1164-8.
3. Akasofu S.-I. The relationship between the magnetosphere and magnetospheric/auroral substorms. Ann. Geophys. 2013, vol. 31, no. 3, pp. 387–394. DOI: 10.5194/angeo-31-387-2013.
4. Baker D.N., Pulkkinen T.I., Angelopoulos V., Baumjohann W., McPherron R.L. Neutral line model of substorms: Past results and present view. J. Geophys. Res.: Space Phys. 1996, vol. 101, no. A6, pp. 1297–13010. DOI: 10.1029/95ja03753.
5. Baker D.N., McPherron R.L., Dunlop M.W. Cluster observations of magnetospheric substorm behavior in the near- and mid-tail region. Adv. Space Res. 2005, vol. 36, no. 10, pp. 1809–1817. DOI: 10.1016/j.asr.2004.04.021.
6. Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnetic variations and storms. Novosibirsk, Nauka Publ., 1979, 248 p. (In Russian).
7. Boakes P.D., Milan S.E., Abel G.A., Freeman M.P., Chisham G., Hubert B., Sotirelis T. On the use of IMAGE FUV for estimating the latitude of the open/closed magnetic field line boundary in the ionosphere. Ann. Geophys. 2008, vol. 26, no. 9, pp. 2759–2769. DOI: 10.5194/angeo-26-2759-2008.
8. Burrell A.G., Chisham G., Milan S.E., Kilcommons L., Chen Y.J., Thomas E.G., Anderson B. AMPERE polar cap boundaries. Ann. Geophys. 2020, vol. 38, no. 2, pp. 481–490. DOI: 10.5194/angeo-38-481-2020.
9. Carter J.A., Milan S.E., Coxon J.C., Walach M.T., Anderson B.J. Average field-aligned current configuration parameterised by solar wind conditions. J.Geophys. Res.: Space Phys. 2016, vol. 121, no. 2, pp. 1294–1307. DOI: 10.1002/2015ja021567.
10. Coley W.R. Spatial relationship of field-aligned currents, electron precipitation, and plasma convection in the auroral oval. J. Geophys. Res.: Space Phys. 1983, vol. 88, no. A9, pp. 7131–7141. DOI: 10.1029/JA088iA09p07131.
11. Cowley S.W.H., Lockwood M. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Ann. Geophys. 1992, vol. 10, pp. 103–115.
12. Coxon J.C., Milan S.E., Anderson B.J. A review of Birkeland current research using AMPERE. Electric Currents in Geospace and Beyond. Ed. by A. Keiling et al., Hoboken, New Jersey, USA, Wiley-AGU, 2018, pp. 259–278. DOI: 10.1002/9781119324522.ch16.
13. Dungey J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, vol. 6, no. 2, pp. 47–48. DOI: 10.1103/PhysRevLett.6.47.
14. Feldstein Y.I. Auroral morphology, I. Auroral and geomagnetic disturbances. Tellus. 1964, vol. 16, no. 2, pp. 252–257. DOI: 10.3402/tellusa.v16i2.8897.
15. Feldstein Y.I., Galperin Y.I. The auroral luminosity structure in the high-latitude upper atmosphere: Its dynamics and relationship to the large-scale structure of the Earth’s magnetosphere. Rev. Geophys. 1985, vol. 23, no. 3, pp. 217–275. DOI: 10.1029/RG023i003p00217.
16. Feldstein Y.I., Shevnin A.D., Starkov G.V. Auroral oval and magnetic field in the tail of the magnetosphere. Proc. the Birkeland Symposium on Aurora and Magnetic Storms. September 18–22, 1967, Sandefjord, Norway. Ed. by A. Egeland, J.A. Holtet, Paris, Centre National de la Recherche Scientifique, 1968, pp. 43–45.
17. Fujii R., Hoffman R.A., Sugiura M. Spatial relationships between region 2 field-aligned currents and electron and ion precipitation in the evening sector. J. Geophys. Res.: Space Phys. 1990, vol. 95, no. A11, pp. 18939–18947. DOI: 10.1029/JA095iA11p18939.
18. Gary J.B., Zanetti L.J., Anderson B.J., Potemra T.A., Clemmons J.H., Winningham J.D., Sharber J.R. Identification of auroral oval boundaries from in situ magnetic field measurements. J. Geophys. Res.: Space Phys. 1998, vol. 103, no. A3, pp. 4187–4197. DOI: 10.1029/97ja02395.
19. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res.: Space Phys. 2012, vol. 117, no. A9, pp. A09213. DOI: 10.1029/2012ja017683.
20. Harang L. The mean field of disturbance of polar geomagnetic storms. Terrestrial Magnetism and Atmospheric Electricity. 1946, vol. 51, no. 3, pp. 353–380. DOI: 10.1029/TE051i003p00353.
21. Heikkila W.J. Earth’s Magnetosphere: Formed by the Low-Latitude Boundary Layer. Amsterdam, Elsevier, 2011, 535 p. DOI: 10.1016/C2009-0-05888-7.
22. Heppner J.P. Electric field variations during substorms: OGO-6 measurements. Planetary Space Sci. 1972, vol. 20, no. 9, pp. 1475–1498. DOI: 10.1016/0032-0633(72)90052-9.
23. Iijima T., Potemra T.A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res.: Space Phys. 1978, vol. 83, no. A2, pp. 599–615. DOI: 10.1029/JA083iA02p00599.
24. Jones A.V. Aurora. Dordrecht, Netherlands, Springer, 1974, 304 p. DOI: 10.1007/978-94-010-2099-2.
25. Kamide Y., Kokubun S., Bargatze L.F., Frank L.A. The size of the polar cap as an indicator of substorm energy. Physics and Chemistry of the Eart. Part C: Solar, Terrestrial and Planetary Science. 1999, vol. 24, no. 1-3, pp. 119–127. DOI: 10.1016/s1464-1917(98)00018-x.
26. Khorosheva O.V. Spatial-temporal distribution of auroras. Moscow, Nauka Publ., 1967, 84 p. (In Russian).
27. Kondratyev A.B., Penskikh Yu.V., Lunyushkin S.B. Automated method for determining auroral oval boundaries, based on the magnetogram inversion technique. Baikal Young Scientists’ International School on Fundamental Physics: Proc. XV Young Scientists’Conference “Interaction of Fields and Radiation with Matter”. Irkutsk, 11–16 September 2017. Irkutsk, ISTP SB RAS, 2017, pp. 107–112. (In Russian).
28. Korth H., Zhang Y., Anderson B.J., Sotirelis T., Waters C.L. Statistical relationship between large-scale upward field-aligned currents and electron precipitation. J. Geophys. Res.: Space Phys. 2014, vol. 119, no. 8, pp. 6715–6731. DOI: 10.1002/2014ja019961.
29. Longden N., Chisham G., Freeman M.P., Abel G.A., Sotirelis T. Estimating the location of the open-closed magnetic field line boundary from auroral images. Ann. Geophys. 2010, vol. 28, no. 9, pp. 1659–1678. DOI: 10.5194/angeo-28-1659-2010.
30. Lu G., Reiff P.H., Hairston M.R., Heelis R.A., Karty J.L. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field. J. Geophys. Res.: Space Phys. 1989, vol. 94, no. A10, pp. 13447–13461. DOI: 10.1029/JA094iA10p13447.
31. Lunyushkin S.B., Mishin V.V., Karavaev Y.A., Penskikh Y.V., Kapustin V.E. Studying the dynamics of electric currents and polar caps in ionospheres of two hemispheres during the August 17, 2001 geomagnetic storm. Solar-Terr. Phys. 2019, vol. 5, no. 2, pp. 15–27. DOI: 10.12737/stp-52201903.
32. Lunyushkin S.B., Penskikh Y.V. Diagnostics of the auroral oval boundaries on the basis of the magnetogram inversion technique. Solar-Terr. Phys. 2019, vol. 5, no. 2, pp. 88–100. DOI: 10.12737/stp-52201913.
33. Maynard N.C. Electric field measurements across the Harang discontinuity. J. Geophys. Res. 1974, vol. 79, iss. 31, pp. 4620–4631. DOI: 10.1029/JA079i031p04620.
34. Milan S.E., Lester M., Cowley S.W.H., Oksavik K., Brittnacher M., Greenwald R.A., Sofko G., Villain J.P. Variations in the polar cap area during two substorm cycles. Ann. Geophys. 2003, vol. 21, no. 5, pp. 1121–1140. DOI: 10.5194/angeo-21-1121-2003.
35. Milan S.E., Provan G., Hubert B. Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. J. Geophys. Res.: Space Phys. 2007, vol. 112, no. A1, pp. A01209. DOI: 10.1029/2006ja011642.
36. Milan S.E., Hutchinson J., Boakes P.D., Hubert B. Influences on the radius of the auroral oval. Ann. Geophys. 2009, vol. 27, no. 7, pp. 2913–2924. DOI: 10.5194/angeo-27-2913-2009.
37. Mishin V.M. The magnetogram inversion technique and some applications. Space Sci. Rev. 1990, vol. 53, no. 1-2, pp. 83–163. DOI: 10.1007/bf00217429.
38. Mishin V.M., Lunyushkin S.B., Shirapov D.S., Baumjohann W. A new method for generating instantaneous ionospheric conductivity models using ground-based magnetic data. Planet. Space Sci. 1986, vol. 34, no. 8, pp. 713–722. DOI: 10.1016/0032-0633(86)90125-x.
39. Mishin V.M., Bazarzhapov A.D., Saifudinova T.I., Lunyushkin S.B., Shirapov D.S., Woch J., Eliasson L., Opgenoorth H., Murphree J.S. Different methods to determine the polar cap area. J. Geomagnetism and Geoelectricity. 1992, vol. 44, no. 12, pp. 1207–1214. DOI: 10.5636/jgg.44.1207.
40. Mishin V.M., Mishin V.V., Lunyushkin S.B., Wang J.Y., Moiseev A.V. 27 August 2001 substorm: Preonset phenomena, two main onsets, field-aligned current systems, and plasma flow channels in the ionosphere and in the magnetosphere. J. Geophys. Res.: Space Phys. 2017, vol. 122, no. 5, pp. 4988–5007. DOI: 10.1002/2017ja023915.
41. Newell P.T., Gjerloev J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res.: Space Phys. 2011, vol. 116, no. A12, pp. A12211. DOI: 10.1029/2011ja016779.
42. Newell P.T., Gjerloev J.W. Local geomagnetic indices and the prediction of auroral power. J. Geophys. Res.: Space Phys. 2014, vol. 119, no. 12, pp. 9790–9803. DOI: 10.1002/2014ja020524.
43. Newell P.T., Liou K., Zhang Y., Sotirelis T., Paxton L.J., Mitchell E.J. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather. 2014, vol. 12, no. 6, pp. 368–379. DOI: 10.1002/2014sw001056.
44. Penskikh Y.V. Applying the method of maximum contributions to the magnetogram inversion technique. Solar-Terr. Phys. 2020, vol. 6, no. 4, pp. 57–65. DOI: 10.12737/stp-64202009.
45. Rigler E.J., Fiori R.A.D., Pulkkinen A.A., Wiltberger M., Balch C. Interpolating Geomagnetic Observations. Geomagnetically Induced Currents from the Sun to the Power Grid. Ed. by J.L. Gannon et al., Washington, D.C., USA, AGU-Wiley, 2019, pp. 15–41. DOI: 10.1002/9781119434412.ch2.
46. Ruohoniemi J.M., Baker K.B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res.: Space Phys. 1998, vol. 103, no. A9, pp. 20797–20811. DOI: 10.1029/98ja01288.
47. Russell C.T., McPherron R.L. The magnetotail and substorms. Space Sci. Rev. 1973, vol. 15, no. 2-3, pp. 205–266. DOI: 10.1007/bf00169321.
48. Shirapov D.S., Mishin V.M. Modeling of the global electrodynamic processes in the geomagnetosphere. Ulan-Ude, East Siberian State Technological University, 2009, 216 p. (In Russian).
49. Shukhtina M.A., Gordeev E.I., Sergeev V.A., Tsyganenko N.A., Clausen L.B.N., Milan S.E. Magnetotail magnetic flux monitoring based on simultaneous solar wind and magnetotail observations. J. Geophys. Res.: Space Phys. 2016, vol. 121, no. 9, pp. 8821–8839. DOI: 10.1002/2016ja022911.
50. Untiedt J., Baumjohann W. Studies of polar current systems using the IMS Scandinavian magnetometer array. Space Sci. Rev. 1993, vol. 63, no. 3-4, pp. 245–390. DOI: 10.1007/bf00750770.
51. Vorobjev V.G., Yagodkina O.I., Katkalov Y.V. Auroral precipitation model and its applications to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI: 10.1016/j.jastp.2013.05.007.
52. Xiong C., Stolle C., Alken P., Rauberg J. Relationship between large-scale ionospheric field-aligned currents and electron/ion precipitations: DMSP observations. Earth, Planets and Space. 2020, vol. 72, no. 1, pp. 147. DOI: 10.1186/s40623-020-01286-z.
53. URL: https://supermag.jhuapl.edu (accessed November 19, 2020).
54. URL: https://sourceforge.net/projects/ovation-prime/? source=typ_redirect (accessed November 19, 2020).
55. URL: http://apm.pgia.ru/webtool/frontend (accessed November 19, 2020).
56. URL: http://vt.superdarn.org/tiki-index.php?page=Radar +Overview (accessed November 19, 2020).
57. URL: https://omniweb.gsfc.nasa.gov/form/omni_min.html (accessed November 19, 2020).