Moscow, Russian Federation
Moscow, Russian Federation
Knowledge of the ultimate sensitivity of the acoustic emission (AE) method is useful in studies of the mechanisms of plastic deformation of the structure, the formation and development of micro-, meso- and macro-cracks, as well as continuous processes, such as the outflow of liquids and gases, friction and a number of others. Analysis of literary data on assessment of limit sensitivity at identification of AE sources was carried out. It has been shown that when using standard resonant piezoelectric transducers with a frequency bandwidth of 30 ± 10 kHz, the ultimate sensitivity is the fraction of the nanometer in the displacement of the surface of the object and the unit micron of the size of the microcrack during its formation and hopping development. When testing industrial facilities, in many cases the level of external noise is significantly higher, the detection of defects decreases and amounts to a fraction of a millimeter. However, an increase in the energy and amplitude of AE signals as the defect develops in the vast majority of cases leads to the fact that when a crack reaches dimensions that begin to threaten the strength of the monitored object, AE signals are reliably detected by the equipment. Knowledge of the maximum sensitivity of the AE method makes it possible to compare it with other NDT methods by this parameter.
acoustic emission, detection capability, flaw size, detection probability, cracks, dislocations, piezoelectric transducer
1. Ivanov V. I., Vlasov I. E. Metod akusticheskoy emissii. Nerazrushayuschiy kontrol' / Spravochnik // Pod obsch. red. V. V. Klyueva. T. 7. Kn. 1. — M.: Mashinostroenie, 2005. — 340 s.
2. Ivanov V. I., Barat V. A. Akustiko-emissionnaya diagnostika / Spravochnik. —M.: ID «Spektr», 2017. — 368 s.
3. ASTM Nondestructive testing handbook. V. 5: Acoustic emission testing / Ed. P. McIntire. — Columbus, OH: American Society for Non Destructive Testing), 1987, r. 77–83.
4. Konstantinov V. L., Lykov Yu. I., Panin V. I. Chuvstvitel'nost' p'ezopreobrazovateley pri izmerenii slabyh signalov emissii voln napryazheniy. — Defektoskopiya. 1974. № 3. S. 134–135.
5. Domarkas V. I., Kazhis R.-I. Yu., Yaronis E. P. Teplovye shumy na vyhode p'ezoelektricheskih priemnikov zvuka. — Akust. zhurnal. 1971. T. 17. Vyp. 1. S. 43–49.
6. Greshnikov V. A., Drobot Yu. I. Akusticheskaya emissiya. — M: Izd-vo Standartov, 1976. — 270 s.
7. Agarwal A. B. L., Frederick J. R., Felbeck D. K. Detection of plastic microstrain in aluminum by acoustic emission. — Metall. Trans. I. 1970. R. 1069–1071.
8. Scruby C. B., Jones C., Titchmarsh J. M., Wadley H. N. G. Relationship between microstructure and acoustic emission in Mn-Mo-Ni A533B steel. — Metal Science. June 1981. P. 241–261.
9. Wadley H. N. G., Scruby C. R., Shrimpton G. Quantitative acoustic emission source charactezrisation during low temperature cleavage and intergranular fracture. — Acta Metallurgica. 1981. V. 29. R. 399–414.
10. Scruby C. B., Wadley H. N. G. A calibrated capacitance transducer for the detection of acoustic emission. — J. Phys. D: Appl. Phys. 1978. V. 11. R. 1487–1494.
11. Baranov V. M. Ocenka predel'noy chuvstvitel'nosti akustiko-emissionnogo metoda. — Defektoskopiya. 1990. № 5. S. 49–54.
12. Dunegan H. L., Harris D. O. Acoustic Emission – A New Non-destructive Testing Tool. — Ultrasonic, 1969. No. 7. P. 160–166.
13. Wadley H. N. G., Scruby C. B., Lane P., Hudson A. Influence of Microstructure on Acoustic Emission during Deformation and Fracture of Fe-3,5Ni-0,21C Steel. — Metal Science. 1981. V. 15. Nov. – Dec. P. 514–524.
14. Scruby C., Wadley H., Sinclair J. E. The origin of acoustic emission during deformation of aluminum and an aluminum–magnesium alloy. — Philosophical Magazine A. 1981. V. 44. No. 2. P. 249–274.
15. Scruby C. B., Wadley H. N. G. An assessment of acoustic emission for nuclear pressure vessel monitoring. — Progress in Nucl. Energy. 1983. V. 11. No. 3. P. 275–297.
16. Eitzen D. G., Wadley H. N. G. Acoustic Emission: Establishing the Fundamentals. — J. Research of the NBS. 1984. V. 89, No. 1.
17. Heiple C. R., Carpenter S. H. Acoustic Emission Produced by Deformation of Metals and Alloys — A Review: Part I. — J. Acoustic: Emission. 1987. V. 6. No. 3. P. 177–204.
18. Gillis P. P., Hamstad M. A. Some fundamental aspects of the theory of acoustic emission. — Mater. Sci. & Eng.. 1974. V. 14. P. 103—108.
19. Fisher R. M., Lally J. S. Microplasticity detected by an acoustic technique. — Can. J. Phys. 1967. V. 45. P. 1147–1159.
20. Wadley H. N. G., Scruby C. B., Speake J. H. Acoustic emission for physical examination of metals. — Internat. Metals Rev. 1980. V. 25. No. 1. P. 41–64.
21. Danyuk A. V., Afanas'ev M. A., Merson D. L., Vinogradov A. Yu. Anizotropiya signala akusticheskoy emissii pri carapanii monokristalla alyuminiya. — Pis'ma o materialah. 2019. T. 9. № 1 (33). S. 130–135.
22. Danyuk A. V., Merson D. L., Vinogradov A. Yu. Identifikaciya lokal'noy deformacii pri skraybirovanii polikristallicheskoy medi. — Vektor nauki Tol'yattinskogo gos. un-teta. 2013. № 3 (25). S. 144–147.
23. Vinogradov A., Vasilev E., Seleznev M. et al. On the limits of acoustic emission detectability for twinning. — Mater. Lett. 2016. No. 7. P. 63–70.
24. Wadley H. N. G., Scruby C. B. Cooling rate effects on acoustic emission microstructure relationships in ferritic steels. — J. Materials Sci. 1991. V. 26. P. 5777–5792.
25. Scruby C. B., Wadley H. N. G., Rusbridge K. L. Origin of Acoustic Emission in Aged Al-Zn-Mg Alloys II: Cooper-containing Quaternary Alloys. — Materials Sci. & Eng. 1983. V. 59. P. 169–183.
26. Cousland S. McK., Scala C. M. Acoustic Emission and Microstructure in Aluminum alloys 7075 and 7050. — Ibid. P. 609–614.
27. Ivanov V. I. O chuvstvitel'nosti priborov akustiko-emissionnogo kontrolya. — V kn.: Trudy Vsesoyuznoy akusticheskoy konf. — M.: 1983, c. 75—77.
28. Brunner A. J. Correlation between acoustic emission signals and delaminations in carbon fiber-reinforced polymer-matrix composites: a new look at mode I fracture test data. — In: Proc. 32nd Conf. of the European Working Group on Acoustic Emission. —Prague: 07-09 September 2016.
29. Baensch F., Zauner M., Sanabria S. J. et al. Damage evolution in wood: synchrotron radiation micro-computed tomography (SRμCT) as a complementary tool for interpreting acoustic emission (AE) behavior. — Holzforschung, 2015. Bd 68, H. 8. Z. 1015–1025.
30. Lord A. E. Jr. On the sensitivity of the acoustic Barkhausen/magnetomechanical acoustic emission effect. — J. Acoustic Emission. 1982. V. 1. No. 3. P. 193–194.
31. Fȯrli O. Development and optimization of NDT for practical use – Optimal NDT efforts and use of NDT results. In: 5 Nordiska NDT Symposiet Esbo, Finland. IIW Report Number IIW-V-968-91, 1990. R. 46.
32. Boreyko D. A., Bykov I. Yu., Smirnov A. L. Chuvstvitel'nost' metoda akusticheskoy emissii pri obnaruzhenii defektov v trubnyh izdeliyah. — Defektoskopiya. 2015. № 8. S. 24–33.
33. Hoeppner D. W., Krupp W. E. Fracture Mechanics Application in Material Selection Fabrication Sequencing and Inspection. — J. Aircraft, F01. 1973. V. 10. No. 11. P. 682–688.
34. Pollock A. A., Thompson D. O., Chimenti D. E. A POD model for acoustic emission — discussion and status. In: AIP Conf. Proc. / AIP Rev. of Progress in Quantitative NDE. — Kingston (Rhode Island), 26–31 July 2009, v. 29, p. 1927–1933.
35. Pollock A. Probability of detection for acoustic emission. — J. Acoustic Emission. 2007. V. 25. P. 231–237.