METHOD FOR GENERATOR FREQUENCY EVALUATION UNDER UNPREDICTABLE CHANGES IN MEASUREMENT INTERVAL SIZE
Abstract and keywords
Abstract (English):
The method of frequency estimation of the simultaneously and independently operating generators under unpre-dictable changes in the measurement interval size is studied. Errors arising under the method application due to the transiency of the oscillator frequencies on the frequency estimation interval are considered. The first error component is related to the deviation of the measurable generator phase due to the inherent generator frequency instability; and the second one is determined by the unpredictable changes in the oscillator frequency on the measurement interval. It is noted that the decrease of each of the components imposes incompatible require-ments on the duration of the time length. On the basis of the known relations identifying the potentially reachable value of the root-mean-square frequency deviation from the nominal value, the expressions determining the op-timum time length are obtained. As a criterion when choosing the time length, the minimum of two errors sum is considered. The analytical relations determining potentially reachable accuracy of the frequency estimates are presented. The unbiasedness, efficiency, and consistency of the estimates obtained are proved.

Keywords:
generator frequency, time length estimation, evaluation of frequency deviation from the nominal value, statistical method of frequencies stabilization, measurement interval
Text

Введение. На современном этапе развития инфокоммуникационных технологий повышение точности и стабильности формирования частоты генераторов является одной из важнейших задач. Эти вопросы актуальны для систем связи радиолокации, радионавигации и метрологии. Однако во многих случаях, например в радиолокационных или радионавигационных системах, можно ограничиться только знанием частоты генераторов, чтобы учесть это значение при определении навигационных параметров объекта на местности и в пространстве или при поверке приборов [1–5].

 

References

1. Deundyak, V. M., Mogilevskaya, N. S. Imitatsionnaya model´ tsifrovogo kanala peredachi dannykh i algebraicheskie metody pomekhoustoychivogo kodirovaniya. [Simulation model of digital data transmission channel and algebraic methods for error control coding.] Vestnik of DSTU, 2001, no. 1, pp. 98–105 (in Russian).

2. Sumbatyan, М. А., Shevtsov, S. E. Algoritm tsifrovoy obrabotki akusticheskikh signalov audiofaylov i ikh raspoznavanie na osnove ob´´ektivnykh kriteriev. [Algorithm of digital processing of audio file acoustic sig-nals and their recognition on the basis of objective criteria.] Vestnik of DSTU, 2008, no. 3, pp. 238–245 (in Rus-sian).

3. Vasilyev, А. F., Merkulov, E. A. Programmiruemyy tsifrovoy preselektor dlya sistem radiosvyazi dvoynogo naznacheniya. [Programmable digital preselector for radio communication systems of dual purpose.] Vestnik of DSTU, 2012, no. 2, pp. 5–11 (in Russian).

4. Howe, D. A., et al. Enhancements to GPS Operations and Clock Evaluations Using a Total Hadamard Deviation. IEEE Ultrasonics, Ferroelectrics and Frequency Control, vol. 52, no. 8, pp. 1253–1261.

5. Bregni, S. Generation of Pseudo-Random Power-Law Noise Sequences by Spectral Shaping. Commu-nications World. Pasadena : WSES Press, 2004, pp. 173–178.

6. Romanov, S. К., Tikhomirov, N. M., Lenshin, A. V. Sistemy impul´sno-fazovoy avtopodstroyki v ustroystvakh sinteza i stabilizatsii chastot. [Pulse-system PLL in devices of synthesis and frequency control.] Moscow : Radio i svyaz´, 2010, 328 p. (in Russian).

7. Belov, L. A. Sovremennye sintezatory chastot i signalov. [Modern frequency synthesizers and sig-nals.] Radiotekhnika, 2007, no. 3, pp. 21–25 (in Russian).

8. Riley, W.-J. Handbook of Frequencies Stability Analysis. National Institute of Standards and Technol-ogy ; US Department of Commerce. Washington : U. S. Government printing office, 2008, 124p.

9. Allan, D.-W. Characterization of Precision Clocks and Oscillators. Proc. 5th European Frequency and Time Forum. London, 1991, pp. 1–9.

10. Riley, W.-J. Techniques for Frequency Stability Analysis. Tutorial at the 2003 Intelligence Frequency Control Symposium. Canberra, 2003, pp. 496–508.

11. Howe, D.-A. Interpreting Oscillatory Frequency Stability Plots. Proc. IEEE Frequency Control Sym-posium. Canberra, 2002, pp. 725–732.

12. Cherkesova, L. V. Approksimatsiya kharakteristik nelineynykh elementov parametricheskikh preobrazovateley v vysshikh zonakh neustoychivosti kolebaniy. [Approximation of characteristics of nonlinear elements of parametric transducers in higher zones of oscillation instability.] Vestnik of DSTU, 2009, no. 4, pp. 599–613 (in Russian).

13. Howe, D.-A., McGee-Taylor, J., Tasset, T. TeoH Bias-Removal Method. IEEE Ultrasonics, Ferroe-lectrics and Frequency Control Symposium.Pasadena, 2006, vol. 56, no. 7, pp. 788–792.

14. Marareskul, Т. А., Grechkoseyev, A. K., Vasilenko, A. V. Eksperiment po sinkhronizatsii bortovykh shkal vremeni navigatsionnykh kosmicheskikh apparatov GLONASS po vzaimnym mezhsputnikovym izmereni-yam. [Experiment on synchronization of board time scales of GLONASS navigation satellites on mutual intersat-ellite measurements.] Radiotekhnika, 2013, no. 6, pp. 16–21 (in Russian).

15. McGee-Taylor, J., Howe, D.-A. TeoH and Allan Deviation as Power-Law Noise Estimators. IEEE Ul-trasonics, Ferroelectrics and Frequency Control Symposium, 2007, vol. 57, no. 2, pp. 714–722.

16. McGee-Taylor, J., Howe, D.-A. Fast TeoBR: A method for long data set stability analisys. IEEE Ul-trasonics, Ferroelectrics and Frequency Control Symposium, 2008, vol. 58, no. 3, pp. 731–840.

17. Gabrielyan, D. D., et al. Sposob stabilizatsii chastot generatorov : patent 2197060 Ros. Federatsiya, MPK7H03L7/00, G01R23/12 . [Method for stabilizing the oscillator frequencies: Patent 2197060 RF. MPK7H03L7/00, G01R23/12] Patent RF, no. 2219654, 2003 (in Russian).

18. Gabrielyan, D. D., et al. Metody vysokotochnykh izmereniy i vosproizvedeniya fizicheskikh velichin. [Methods for high-precision measurements and reproduction of physical quantities.] Physical Bases of Instru-mentation, 2012, vol. 1, no. 2, pp. 72–77 (in Russian).

19. Ventsel, E. S. Teoriya veroyatnostey : uchebnik dlya vuzov. [Probability theory: textbook for high schools.] 5th ed. Moscow : Vysshaya shkola, 1998, 576 p. (in Russian).

20. Kobzar, А. I. Prikladnaya matematicheskaya statistika. [Applied Mathematical Statistics.] Moscow : Fizmatlit, 2006, 816 p. (in Russian).

Login or Create
* Forgot password?