A one-dimensional thermoelastic contact problem on the vertical insertion of a rigid half-plane moving horizontally at a constant speed over the elastic coating (strip) while the bottom side of the latter rigidly resting on the non-deforming foundation is considered. On the foundation surface, the temperature is kept constant. A heat flow generated by the frictional contact is directed to the coating. The problem solution is obtained using the Laplace integral transform and is represented in the form of contour integrals. The location of the solution integrand poles is studied at various task options. Temperature, displacement, and stress distributions over the coating depth are derived in the form of the infinite series over eigenfunctions. It is shown that the thermoelastodynamic instability of the obtained solutions is present across the whole time interval and at any velocity of the half-plane sliding over the coating surface.
thermoelastodynamic instability, coupled thermoelasticity problem, frictional contact, coating
Введение. Теоретическому и экспериментальному исследованию термоупругодинамической неустойчивости скользящего фрикционного контакта уделяется достаточно большое внимание со стороны научно-технического сообщества ([1-9] и другие). При теоретическом изучении задач динамики термоупругого скользящего контакта наиболее часто использующимися методами исследования являются методы малых возмущений [3,4,7], с помощью которых устанавливается термоупругодинамическая устойчивость или неустойчивость решения задачи, определяется параметрическая область устойчивости или неустойчивости решения задачи [5].
1. Barber, J. R. Thermoelastic instabilities in the sliding of conforming solids. Proceedings of the Royal Society A. 1969, vol. 312, pp. 381–394.
2. Dow, T. A., Burton, R. A. Thermoelastic instability of sliding contact in the absence of wear. Wear, 1972, vol. 19, pp. 315–328.
3. Burton, R. A., Nerlikar, V., Kilaparti, S. R. Thermoelastic instability in a seal-like configuration. Wear, 1973, vol. 24, pp. 177–188.
4. Barber, J. R., Dundurs, J., Comninou, M. Stability considerations in thermoelastic contact. Transac-tions ASME. Journal of Applied Mechanics. 1980, vol. 47, iss. 4, pp. 871–874.
5. Afferrante, L., Ciavarella, M., Barber, J. R. Sliding thermoelastodynamic instability. Proceedings of the Royal Society A. 2006, vol. 462, pp. 2161-2176.
6. Morov, V. A., Cherskiy, I. N. Termouprugaya neustoychivost´ friktsionnogo kontakta shtampov s poluprostranstvom. [Thermoelastic instability of stamp friction contact with a halfspace.] Friction and Wear, 1985, vol. 6, no. 1, pp. 18–27 (in Russian).
7. Ciavarella, M., Johansson, L., Afferrante, L., Klarbring, A., Barber, J. R. Interaction of thermal con-tact resistance and frictional heating in thermoelastic instability. International Journal of Solids and Structures, 2003, vol. 40, iss. 21, pp. 5583–5597.
8. Moirot, F., Nguyen, Q. S. Brake squeal: a problem of flutter instability of the steady sliding solution. Archives of Mechanics, 2000, vol. 52, pp. 645–662.
9. Kinkaid, N. M., O’Reilly, O. M., Papadopoulos, P. Automotive disk brake squeal. Journal of Sound and Vibration, 2003, vol. 267, pp. 105–166.
10. Lourie, A. I. Teoriya uprugosti [Theory of elasticity.] Moscow : Nauka, 1979, 979 p. (in Russian).
11. Tikhonov, A. N., Samarskii, A. A. Equations of Mathematical Physics. Dover Books on Physics, 2011, 800 p.
12. Nowacki, W. Thermoelasticity. Addison-Wesley Publishing Company, 1962. 628 p.
13. Ditkin, V. A., Prudnikov, A. P. Integralynie preobrazovaniya i operacionnye ischisleniya [Integral transforms and operational calculus.] Moscow : Fizmatlit, 1961, 524 p. (in Russian).
14. Vilenkin, N. Y., Flaherty, R. E. Functional Analysis. Wolters-Noordhoff B. V., 1972, 394 p.
15. Bateman, H., Erdelyi, A. Higher transcendental functions. Vol. 1. New York : McGraw-Hill, 1953.
16. Brychkov, Y. A., Prudnikov, A. P. Integral Transforms of Generalized Functions. New York : Gor-don and Breach Science Publishers, 1989, 343 p.
17. Hurwitz, A., Courant, P. Teoriya funkciy. [The Theory of Functions.] Moscow : Nauka, 1968, 648 p. (in Russian).
18. Titchmarsh, E. C. The Theory of Functions (2nd edition). New York : Oxford University Press, 1976, 464 p.
19. Brillinger, D. R. Time series: Data analysis and theory. New York : Holt, Rinehart & Winston, 1975.