Radiation-Induced Changes in Nucleic Acids of Brain Neurons
Abstract and keywords
Abstract (English):
Purpose: Study of radiation-induced changes in the content of nucleic acids in neurons of the brain after exposure to ionizing radiation in doses of 0.1 – 1.0 Gy. Material and methods. The study was carried out in compliance with the rules of bioethics on 240 white outbred male rats at the age of 4 months. by the beginning of the experiment, exposed to a single exposure to γ-radiation of 60Co in doses of 0.1–1.0 Gy. Neuromorphological methods were used to assess morphometric and tinctorial parameters of nerve cells, as well as the dynamics of changes in the content of nucleic acids in neurons during the entire life span of animals. Statistical processing of the results was carried out using the Statistica 6.1 software packages, using parametric criteria. Results: In control and irradiated animals throughout their life, there are undulating changes in the content of nucleic acids in the neurons of the brain with a gradual decrease in indicators by the end of the experiment. At the same time, changes in the level of DNA in the nuclei and RNA in the nucleoli are usually associated with changes in the size of the structures of their localization, and the RNA content in the cytoplasm is apparently associated with changes in the physiological state of neurons (rest, excitation, inhibition) and the corresponding structural and functional rearrangement of nerve cells. Nucleic acid changes do not have a linear dose and time dependence on the factors investigated. At the end of the experiment, when death of both irradiated and control animals is observed, the content of nucleic acids in neurons is statistically significantly reduced in all groups, and to a greater extent in irradiated animals. Conclusion: No functionally significant radiation-induced changes in the content and topochemistry of the products of histochemical reactions were revealed in the detection of nucleic acids in the structures of brain neurons. However, in some periods of observation, the content of nucleic acids in neurons in irradiated animal’s changes to a greater extent than in animals of age control.

Keywords:
radiation, low and moderate doses, brain, neurons, morphometric parameters, RNA, DNA
References

1. Darenskaya NG. Reakciya krovetvornoy sistemy. V kn.: Radiacionnaya medicina. Pod obsch. red. L.A. Il'ina. T.1. Teoreticheskie osnovy radiacionnoy mediciny. M.: Izd. AT. 2004. 295-308. [Darenskaja NG. Reaction of the hematopoietic system. In: Radiation Medicine. Edited by Ilyin LA. Vol. 1. Theoretical foundations of radiation medicine. Moscow. 2004. 295-308. (In Russian)].

2. Zhizhina GP. Vliyanie malyh doz nizkointensivnoy ioniziruyuschey radiacii na strukturu i funkcii DNK. Radiacionnaya biologiya. Radioekologiya. 2011; 51(2):218-28. [Zhizhina G P Influence of small doses of low-intensity ionizing radiation on the structure and functions of DNA. Radiation Biology. Radioecology. 2011; 51(2): 218-28. (In Russian)].

3. Koterov A.N. Malye dozy ioniziruyuschey radiacii: podhody k opredeleniyu diapazona i osnovnye radiobiologicheskie effekty. V kn.: Radiacionnaya medicina. Pod obsch. red. L.A. Il'ina. T.1. Teoreticheskie osnovy radiacionnoy mediciny. M.: Izd. AT. 2004. 871-92. [Koterov A N. Small doses of ionizing radiation: approaches to determining the range and main radiobiological effects. In: Radiation Medicine. Edited by L.A. Ilyin. Vol. 1. Theoretical foundations of radiation medicine. Moscow. 2004. 871-92. (In Russian)].

4. Guidaa MS., et al. Thymoquinone Rescues T. Lymphocytes from Gamma Irradiation-Induced Apoptosis and Exhaustion by Modulating Pro-Inflammatory Cytokine Levels and PD-1, Bax, and Bcl-2 Signaling. Cell Physiol Biochem. 2016; 38(2): 786-800.

5. Sankaranarayanan K., Chakraborty R. Ionizing radiation and genetic risks. XIII. Summary and synthesis of papers VI to XII and estimates of genetic risks in the year 2000. Mutat. Res. 2000; 453(2): 183-97.

6. United Nations. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex A. Epidemiological studies of radiation and cancer. United Nations. New York. 2008. 17-322.

7. Evdokimovskiy EV, Abdullaev SA, Mitroshina IYu, Gubina NE. Obluchenie golovnogo mozga vliyaet na chislo kopiy mtDNK i ee transkriptov v neobluchennyh tkanyah myshey. V sb. mater. Rossiyskoy konferencii «Aktual'nye problemy radiobiologii i astrobiologii. Geneticheskie i epigeneticheskie effekty ioniziruyuschih izlucheniy». Dubna, noyabr' 2016 g. 2016: 19-20. [Evdokimovskij EV, Abdullaev SA, Mitroshina IYu, Gubina NE The brain irradiation effect on the number of copies of mtDNA and its transcripts in non-irradiated tissues of mice. In: Current problems of radiobiology and astrobiology. Genetic and epigenetic effects of ionizing radiation. Dubna, 2016. 19-20. (In Russian)].

8. Sgibneva NV, Fedorov VP, Gundarova O.P, Maslov N.V. Plastichnost' neyronov sensomotornoy kory v usloviyah povyshennogo radiacionnogo fona. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2017; 61(1): 20-6. [Sgibneva NV, Fyodorov V P, Gundarova OP, Maslov NV. Plasticity of sensorimotor cortex neurons in conditions of high radiation background. Medical Radiology and Radiation Safety. 2017; 61(1): 20-6. (In Russian)].

9. Reva AD. Ioniziruyuschie izlucheniya i neyrohimiya. M.: Atomizdat, 1974. 240 c. [Reva AD. Ionizing radiation and Neurochemistry. Moscow. 1974. 240 p. (In Russian)].

10. Davydov BI, Ushakov IB. Ioniziruyuschie izlucheniya i mozg: povedencheskie i strukturno-funkcional'nye patterny. Itogi nauki i tehniki. Radiacionnaya biologiya. M.: VINITI. 1987. 336 c. [Davydov BI, Ushakov IB. Ionizing radiation and brain: behavioral and structural-functional patterns. Results of Science and Technology. Radiation Biology. Moscow: VINITI, 1987. 336 p. (In Russian)].

11. Ushakov IB, Fedorov VP. Malye radiacionnye vozdeystviya i mozg. Voronezh: Nauchnaya kniga, 2015. 536 c. [Ushakov IB, Fyodorov VP. Low radiation impacts and brain. Voronezh. 2015. 536 p. (In Russian)].

12. Ushakov IB, Fedorov VP, Sgibneva NV. Neyromorfologicheskie korrelyaty moschnosti dozy radiacionnogo vozdeystviya. Med.-biol. i soc.-psihol. probl. bezopasnosti v chrezv. situaciyah. 2019; (4): 59-69. [Ushakov IB., Fyodorov VP., Sgibneva NV. The neuromorphological correlation of radiation dose rate. Medico-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2019; (4): 59-69. (In Russian)].

13. Shea SK. A method for in situ cytophotometric estimation of absolute amount of ribonucleic acid using azure B. J. Histochem. Cytochem. 1970; 18(2): 143 - 52.

14. Fedorov VP, Petrov AV, Stepanyan NA. Ekologicheskaya neyromorfologiya. Klassifikaciya tipovyh form morfologicheskoy izmenchivosti CNS pri deystvii antropogennyh faktorov. Zhurnal teoreticheskoy i prakticheskoy mediciny. 2003;(1): 62–6. [Fyodorov VP, Petrov AV, Stepanyan N A. Ecological geomorphology. Classification of typical forms of morphological variability of the Central nervous system under the action of anthropogenic factors. Journal of Theoretical and Practical Medicine. 2003; (1): 62-6. (In Russian)].

15. Karpov VN, Ushakov IB, Davydov BI. Effektivnaya doza kak razdrazhayuschee vozdeystvie pri frakcionirovannom γ-oblucheniya. Radiobiologiya. 1990; 30(1):107–12. [Karpov V.N., Ushakov IB., Davydov BI. Effective dose as an irritant in fractionated γ- irradiation. Radiobiology. 1990;30(1):107-12. (In Russian)].

16. Biryukov AP., Koterov AN. Rol' radiobiologii pri ocenke radiacionnogo riska. Mediko-biologicheskie problemy zhiznedeyatel'nosti. 2010; (1): 25-30. [Biryukov AP., Koterov AN. The role of radiobiology in the assessment of radiation risk. Medical and Biological Oroblems of Life. 2010;(1):25–30. In Russian)].

17. Koterov AN. Ogranicheniya pri rasprostranenii zakonomernostey dlya kletok in vitro na oblast' radiacionnoy mediciny. Medicinskaya radiologiya i radiaconnaya bezopasnost'. 2009; 54(5):5-14. [Koterov AN. Restrictions on the distribution of laws for cells in vitro in the field of radiation medicine. Medical Radiology and Radiation Safety. 2009; 54(5):5-14. (In Russian)].

18. Trott KR, Rosemann M. Molecular mechanisms of radiation carcinogenesis and the linear, nonthreshold dose response model of radiation risk estimation. In: The Effects of Low and Very Low Doses of Ionizing Radiation on Human Health. Ed. by WONUC. Amsterdam – New-York: Elsevier Sicences B.V. 2000: 65-77.

19. Krivickaya GN i dr. Patomorfologicheskie izmeneniya neyronov golovnogo mozga krys v otdalennom periode posle oblucheniya ionami ugleroda i gamma-izlucheniem. Radiobiologiya. 1988; 28(5):681–5. [Krivitskaya GN et al. Pathomorphological changes in rat brain neurons in the long-term period after exposure to carbon ions and gamma radiation. Radiobiology. 1988;28(5): 681–5. (In Russian)].

20. Soldatova LP. Morfologicheskie reakcii nervnyh elementov limbicheskoy oblasti kory mozga na obschee rentgenovskoe obluchenie. Radiobiologiya. 1986; 26(1):123-27. [Soldatova LP. Morphological reactions of the nerve elements of the limbic region of the cerebral cortex to general X-ray irradiation. Radiobiology. 1986;26(1):123-27 (In Russian)]

Login or Create
* Forgot password?