employee
Purpose: To assess effective radiation doses for chest CT for the diagnosis of COVID-19 and calculate the radiation risk of the effects of this exposure. Material and methods: We analyzed the results of 1003 CT examinations of the chest performed in patients (6.2 %‒children 12–14 years, 15.3 %‒adolescents 15–19 years, 60.1 %‒adults 20–64 years, 18.4 %‒older persons 65 years and older) with suspected COVID-19 during one week in October 2020 in the city diagnostic center. In each group, the average effective dose (ED, mSv) was calculated. Results: The average ED values and confidence intervals (P=0.05) for patients with a single CT scan were: in children 2.59±0.19 mSv, in adolescents 3.23±0.17 mSv, in adults 3.43±0.08 mSv, in older persons 3.28±0.19 mSv. The maximum radiation risk indicators were observed in groups of children (24.1×10-5) and adolescents (23.3×10-5). For adult patients the means risk was 14.4×10-5. In groups of women radiation risk was 1.3–2.3 twice as high, as in male patients. The risk values in children, adolescents and adults are in the range 10×10-5 – 100×10-5 (low), for the older patients were 2.6×10-5 (very low). Conclusion: Because of the study established effective radiation doses for chest CT of patients with the diagnosis of COVID-19 and the radiation risk for 1-3 times chest CT by age and sex of patients was calculated. It was found that the radiation risk for single, double and triple chest CT for patients under 65 is low, 65 and older is very low. Taking into account the radiation risk during CT is necessary to reduce the long-term consequences of radiation exposure on the population.
X-ray computed tomography, effective dose, radiation risks levels, sex, age, COVID-19
1. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiyskoy Federacii v 2019 godu: Gosudarstvennyy doklad. M.: Federal'naya sluzhba po nadzoru v sfere zaschity prav potrebiteley i blagopoluchiya cheloveka, 2020. 113 c.
2. Demin V.F., Biryukov A.P., Sedankin M.K., Solov'ev V.Yu. Udel'nyy risk radiogennogo raka u professionalov // Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2020. T. 65, №2. S.17-20. DOI:10.12737/1024-6177-2020-65-2-17-20.
3. Linet MS, Slovis ThL, Miller DL, Kleinerman R, Lee Ch, Rajaraman P, et al. Cancer Risks Associated with External Radiation from Diagnostic Imaging Procedures. SA // Cancer J Clin 2012. V.62, No.2. P. 5-100. DOI:10.3322/caac.21132.
4. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation Dose Associated with Common Computed Tomography Examinations and the Associated Lifetime attributable Risk of Cancer // Arch Intern Med. 2009. V.169. No.22. P.2078-86. DOI:10.1001/archinternmed.2009.427.
5. Mathews JD, Forsythe AV, Brady Z, et al. Cancer Risk in 680000 People Exposed to Computed Tomography Scans in Childhood or Adolescence: Data linkage study of 11 Million Australians // BMJ. 2013. V.346, P.2360-2378. DOI:10.1136/bmj.f2360.
6. Hall EJ, Brenner DJ. Cancer Risks from Diagnostic radiology // Br J Radiol. 2008. V.81, No. 965. P.362-78, DOI:10.1259/bjr /01948454.
7. Hendee WR, O’Connor MK, Radiation Risks of Medical Imaging: Separating Fact from Fantasy // Radiology. 2012. V.264, No.2. P. 312-21. DOI:10.1148/radiol.12112678.
8. Cardis E, Howe G, Ron E, et al. // Cancer consequences of the Chernobyl Accident: 20 years on // J Radiol Prot. 2006. V.26, No.2. P.127-40. DOI: 10.1088/0952-4746/26/2/001. PMID: 16738412.
9. Galle P. The Sievert: an Enigmatic Unit. // Cell. Mol. Biol. (Noisy-le-grand). 2001. V.47, No.3. P.565-7. PMID: 11441965.
10. Metodicheskie ukazaniya MUK 2.6.7.3652-20. Metody kontrolya v KT-diagnostike dlya optimizacii radiacionnoy zaschity. M., 2020.
11. Metodicheskie ukazaniya MU 2.6.1.3584-19. Izmeneniya v MU 2.6.1.2944-11 Kontrol' effektivnyh doz oblucheniya pacientov pri provedenii medicinskih rentgenologicheskih issledovaniy. M., 2011.
12. Metodicheskie rekomendacii MR 2.6.1.0215-20. Ocenka radiacionnogo riska u pacientov pri provedenii rentgenoradiologicheskih issledovaniy.
13. ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 // Ann. ICRP 2007. V.332, No.37.P.2-4. Available at: https:// www.icrp.org/publication.asp?id=ICRP%20Publication%20103 (Accessed March 10, 2021).
14. ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60 // Ann. ICRP 21. 1991. V.1-3, P.1-211. Available at: http://www.icrp .org/publication.asp?id=ICRP%20Publication%2060 (Accessed March 10, 2021).
15. Damilakis J, Frija G, Hierath M, et al. European Study on Clinical Diagnostic Reference Levels for X-ray Medical Imaging. Deliverable 2.1: Report and Review on Existing Clinical DRLs. March 2018. Available at: http://www.eurosafeimaging. org/wp/wp-content/uploads/2017/09/D2.1_Report-and-review-on-existing-clinical-DRLs_final_published-on-website.pdf. (Accessed March 10, 2021).
16. Molen AJ, Schilham A, Stoop P, et al. A National Survey on Radiation Dose in CT in The Netherlands // Insights Imaging. 2013. V.4, No.3. P.383-90. DOI: 10.1007/s13244-013-0253-9.
17. Bekanntmachung der Aktualisierten Diagnostischen Referenzwerte. Bekanntmachung der Aktualisierten Diagnostischen Referenzwerte für Diagnostische und Interventionelle Röntgen- untersuchungen. Tabelle 7: Diagnostische Referenzwerte für Computertomographie (CT)-Untersuchungen am Erwachsenen 22 Juni 2016. Available at: https://www.bfs.de/DE/themen/ion/ anwendung-medizin/diagnostik/referenzwerte/ referenzwerte_ node.html. (Accessed 10 March 2021).
18. Shrimpton PC, Hillier MC, Lewis MA, Dunn M. National Survey of Doses from CT in the UK: 2003 // Br J Radiol. 2006. V.79, No.948. P. 968-80. DOI:10.1259/bjr/93277434.
19. Brat H, Zanca F, Montandon S, et al. Local Clinical Diagnostic Reference Levels for Chest and Abdomen CT Examinations in Adults as a Function of Body Mass Index and Clinical Indication: a Prospective Multicenter Study // Eur Radiol. 2019. V.29, P.6794-804. https://doi.org/10.1007/s00330-019-06257-x
20. Matkevich E.I., Sinicyn V.E., Bashkov A.N. Sravnenie doz oblucheniya pacientov pri provedenii odnofaznoy i mnogofaznoy komp'yuternoy tomografii v mnogoprofil'nom lechebnom uchrezhdenii // Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2016. T.61, № 6. S.50-56.
21. Matkevich E.I., Sinicyn V.E., Zelikman M.I. i dr. Osnovnye napravleniya snizheniya dozy oblucheniya pacientov pri komp'yuternoy tomografii // Russian Electronic Journal of Radiology (REJR). 2018. T.8, №3. S.60-73. DOI:10.21569/2222-7415-2018-8-3-60-73
22. Grigor'ev Yu.G. Radiacionnaya bezopasnost' kosmicheskih poletov. M.: Atomizdat, 1975. S.40-44.
23. Tsalafoutas IA, Koukourakis GV. Patient Dose Considerations in Computed Tomography Examinations // World J. Radiol. 2010. V.2, No7. P.262-8. DOI: 10.4329/wjr.v2.i7.262.
24. Kopp M, Loewe T, Wuest W, et al. Individual Calculation of Effective Dose and Risk of malignancy based on Monte Carlo simulations after whole body Computed tomography // Scientific Reports. 2020. V.10, P.9475. DOI: 10.1038/s41598-020-66366-2.
25. Arruda GA, Weber RRS, Bruno AC, Pavoni JF. The Risk of Induced Cancer and Ischemic Heart Disease Following Low Dose lung irradiation for COVID-19: estimation based on a virtual case // Int. J. Radiat. Biol. 2021. V.97, No2. P.120-5. DOI:10.1080/09553002.2021.1846818.
26. Matkevich E.I., Sinicyn V.E., Ivanov I.V. Napravleniya optimizacii luchevoy nagruzki pri komp'yuternoy tomografii. M.-Voronezh: Elist, 2018. 200 s.