Russian Federation
This paper analyzes the buyers of the BigCar store, which sells spare parts for trucks, using clustering methods. The algorithms of k-means, g-means, EM and construction of Kohonen networks are considered. For their implementation, the Loginom Community analytical platform is used. Based on sales data for 3 years, buyers are divided into 3 clusters by implementing the k-means, EM algorithms and building a self-organizing Kohonen network. An EM algorithm was also performed with automatic determination of the number of clusters and g-means, which divided buyers into 9 and 10 clusters. The analysis of the resulting clusters showed that the results of the k-means and Kohonen algorithms are better suited to increase sales efficiency.
Data mining, clustering, Kohonen networks, k-means algorithm, EM-algorithm, Data Mining, Loginom system
1. Evdokimova, S.A. Primenenie metodov intellektual'nogo analiza dannyh dlya ocenki vneshneekonomicheskoy deyatel'nosti organizacii / S.A. Evdokimova, V.S. Kopylova // Informatika: problemy, metodologiya, tehnologii : materialy XIX mezhdunarodnoy nauchno-metodicheskoy konferencii. – Voronezh, 2019. – S. 1118-1121.
2. Novikova, T.P. Economic evaluation of mathematical methods application in the management systems of electronic component base development for forest machines / T.P. Novikova, A.I. Novikov // IOP Conference Series: Earth and Environmental Science. International scientific and practical conference «Forest ecosystems as global resource of the biosphere: calls, threats, solutions» (Forestry-2019). – 2019. – P. 012035.
3. Cherezov, D.S. Obzor osnovnyh metodov klassifikacii i klasterizacii dannyh / D.S. Cherezov, N.A. Tyukachev // Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informacionnye tehnologii. – 2009. – № 2. – S. 25-29.
4. Sokolov, S. Adaptive stochastic filtration based on the estimation of the covariance matrix of measurement noises using irregular accurate observations / S. Sokolov, A. Novikov, M. Polyakova // Inventions. – 2021. – T. 6, № 1. – P.10. – DOI: https://doi.org/10.3390/inventions6010010.
5. Sokolov S. An approach to optimal synthesis in a conflict problem / S.V. Sokolov, I.V. Shcherban // Journal of Computer and Systems Sciences International. – 2003. – T. 42, № 5. – P. 692-697.
6. Analiticheskaya platforma Loginom. – URL: https://loginom.ru/ (data obrascheniya: 20.12.2020).
7. Tripathi, Sh. Approaches to clustering in customer segmentation / Sh. Tripathi, A. Bhardwaj, E. Poovammal // International Journal of Engineering &Technology. – 2018. – T. 7(3.12). – Pp. 802–807. – DOI: 10.14419/ijet.v7i3.12.16505
8. Novikova, T.P. Problemy razrabotki intellektual'noy informacionnoy sistemy dlya predpriyatiy mikroelektroniki / T.P. Novikova // Lesotehnicheskiy zhurnal. – 2016. – T. 6, № 2 (22). – S. 204-211.
9. Rayala, V. Big data clustering using improvised fuzzy C-means clustering / V. Rayala, S. R. Kalli // Revue d'Intelligence Artificielle. – 2021. – T. 34(6). – Pp. 701-708. – DOI: 10.18280/RIA.340604
10. Sen'kovskaya, I.S. Avtomaticheskaya klasterizaciya v analize dannyh na osnove samoorganizuyuschihsya kart Kohonena / I.S. Sen'kovskaya, P.V. Saraev // Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. – 2011. – № 2 (34). – S. 78-79.
11. Yakovlev, V. B. Analiz dannyh v analiticheskoy platforme Loginom : uchebnoe posobie / V. B. Yakovlev. – Saarbrücken : LAP LAMBERT, 2020. – 184 s.