Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
Velikiy Novgorod, Veliky Novgorod, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
Impression taking procedure from prosthetic area in case of constructing implant supported prostheses is one of the most important steps in the process of patient rehabilitation especially in producing long span structures. Quality of the impression could affect the precision and passive fit of the prosthesis to the implants therefore the overall quality of the work. Obtaining digital impressions of edentulous jaws with a different number of implants using intraoral devices is still an unresolved problem in full. The ergonomics of the process of obtaining an impression is not easy due to the need to place both scan abutments in the oral cavity and manipulate the working part of the intraoral scanner around them. The accuracy of digital impressions obtained from edentulous jaws for obtaining full-arch implant supported prostheses does not exceed that when obtaining a classic impression, and according to a number of researchers, it is even lower. The aim of this study was to construct implant impression convertible trays with increased to the optimum levels of rigidity, with simple disassemble process and having an easy access to the adapters, and also to digitally compare the rigidity of the author’s impression trays. The method of assessment was digital technology of analysing structural resistance and inherent stresses and deformations using SolidWorks software. We performed analysis of the resistance of the structure to external loads. We have developed and created the customised copyrighted versions of the upper and lower impression trays made of rigid titanium alloy by 3D printing using DMLM technology on a Concept Laser device made of titanium Ti6-Al4-V. Modeling was carried out in the Mimics Medical 21 program (Materialize, Germany) along the contours on the data of cone-beam computed tomography. Performed digital tests reveal the underlying advantages of the designed by authors impression trays.
accuracy, dental implants, edentulous, implant impressions, impression tray, open tray impression technique
1. Lee H., So J.S., Hochstedler J.L., Ercoli C. The accuracy of implant impressions: a systematic review // J Prosthet Dent. — 2008;100(4):285-291. https://doi.org/10.1016/S0022-3913(08)60208-5.
2. Mpikos P., Kafantaris N., Tortopidis D., Galanis C., Kaisarlis G., Koidis P. The effect of impression technique and implant angulation on the impression accuracy of external- and internal-connection implants // Int J Oral Maxillofac Implants. — 2012;27(6):1422-1428.
3. Richi M.W., Kurtulmus-Yilmaz S., Ozan O. Comparison of the accuracy of different impression procedures in case of multiple and angulated implants : Accuracy of impressions in multiple and angulated implants // Head Face Med. — 2020;4(16):9. https://doi.org/10.1186/s13005-020-00225-3.
4. Tafti A.F., Hatami M., Razavi F., Ebadian B. Comparison of the accuracy of open-tray and snap-on impression techniques of implants with different angulations // Dent Res J (Isfahan). — 2019;12(16):413-420.
5. Kim K.R., Seo K.Y., Kim S. Conventional open-tray impression versus intraoral digital scan for implant-level complete-arch impression // J Prosthet Dent. — 2019;122(6):543-549. https://doi.org/10.1016/j.prosdent.2018.10.018.
6. Kim J.H., Kim K.R., Kim S. Critical appraisal of implant impression accuracies: A systematic review // J Prosthet Dent. — 2015;114(2):185-192. https://doi.org/ 10.1016/j.prosdent.2015.02.005.
7. Amin S., Weber H.P., Finkelman M., El Rafie K., Kudara Y., Papaspyridakos P. Digital vs. conventional full-arch implant impressions: a comparative study // Clin Oral Implants Res. — 2017;28(11):1360-1367. https://doi.org/10.1111/clr.12994.
8. Papaspyridakos P., Gallucci G.O., Chen C.J., Hanssen S., Naert I., Vandenberghe B. Digital versus conventional implant impressions for edentulous patients: accuracy outcomes // Clin Oral Implants Res. — 2016;27(4):465-472. https://doi.org/10.1111/clr.12567.
9. Pesce P., Pera F., Setti P., Menini M. Precision and Accuracy of a Digital Impression Scanner in Full-Arch Implant Rehabilitation // Int J Prosthodont. — 2018;31(2):171-175. https://doi.org/10.11607/ijp.5535.
10. Kavadia V., Kourtis S., Zoidis P., Sarafianou A. The influence of impression coping splinting on the accuracy of the open-tray technique // Gen Dent. — 2019;67(3):e5-e9.
11. Baig M.R. Multi-unit implant impression accuracy: A review of the literature // Quintessence Int. — 2014;45(1):39-51. https://doi.org/10.3290/j.qi.a30769. PMID: 24392494.
12. Balamurugan T., Manimaran P. Evaluation of accuracy of direct transfer snapon impression coping closed tray impression technique and direct transfer open tray impression technique: an in vitro study // J Indian Prosthodont Soc. — 2013;13(3):226-232. https://doi.org/10.1007/s13191-012-0141-x.
13. Agarwal S., Ashok V., Maiti S. Open- or Closed-Tray Impression Technique in Implant Prosthesis: A Dentist's Perspective // J Long Term Eff Med Implants. — 2020;30(3):193-198. https://doi.org/10.1615/JLongTermEffMedImplants.2020035933.
14. Saini H.S., Jain S., Kumar S., Aggarwal R., Choudhary S., Reddy N.K. Evaluating the Effect of Different Impression Techniques and Splinting Methods on the Dimensional Accuracy of Multiple Implant Impressions: An in vitro Study // J Contemp Dent Pract. — 2018;19(8):1005-1012.
15. Papazoglou E., Wee A.G., Carr A.B., Urban I., Margaritis V. Accuracy of complete-arch implant impression made with occlusal registration material // J Prosthet Dent. — 2020;123(1):143-148. https://doi.org/10.1016/j.prosdent.2018.12.011.
16. Mandelli F., Zaetta A., Cucchi A., Mangano F.G. Solid index impression protocol: a hybrid workflow for high accuracy and passive fit of full-arch implant-supported restorations // Int J Comput Dent. — 2020;23(2):161-181.
17. Revilla-León M., Att W., Özcan M., Rubenstein J. Comparison of conventional, photogrammetry, and intraoral scanning accuracy of complete-arch implant impression procedures evaluated with a coordinate measuring machine // J Prosthet Dent. — 2021;125(3):470-478. https://doi.org/10.1016/j.prosdent.2020.03.005.
18. Rozov R.A., Arutyunov A.S., Trezubov V.V. Patent RF № 2015102544/14; MPK A 61 C 9/00. Implantacionnaya ottisknaya lozhka. Patent Rossii 154845. 2015;25:2. [R.A. Rozov, A.S. Arutyunov, V.V. Trezubov. Implant impression tray. Russian patent 154845. 2015;25:2. (In Russ.)].
19. Rozov R.A., Azarin G.S. Patent RF № 2015106219/14; MPK A 61 C 9/00. Implantacionnaya ottisknaya lozhka. Patent Rossii 155123. 2015;26:2. [R.A. Rozov, G.S. Azarin. Implant impression tray. Russian Patent 155123. 2015;26:2. (In Russ.)].
20. Rozov R.A. Patent RF № 2018127456; MPK A 61 C 9/00. Sposob polucheniya implantacionnogo ottiska pri sozdanii protyazhennyh konstrukciy. Patent Rossii 2683907. 2019;10:1. [R.A. Rozov. A method of obtaining an implantation impression when creating extended structures. Russian Patent 2683907. 2019;10:1. (In Russ.)].
21. Kan J.Y., Rungcharassaeng K., Bohsali K., Goodacre C.J., Lang B.R. Clinical methods for evaluating implant framework fit // J Prosthet Dent. — 1999;81(1):7-13. https://doi.org/10.1016/s0022-3913(99)70229-5. PMID: 9878969.