DATABASE OF GEOMAGNETIC OBSERVATIONS IN RUSSIAN ARCTIC AND ITS APPLICATION FOR ESTIMATES OF THE SPACE WEATHER IMPACT ON TECHNOLOGICAL SYSTEMS
Abstract and keywords
Abstract (English):
An archive of digital 1-min data from Soviet/Russian Arctic magnetic stations has been created, starting from 1983 to the present. The archive includes data from stations deployed along the Arctic coast by various USSR/Russia institutes. All data are divided into daily files, converted into a standard IAGA2002 format, and provided with graphs for quick-look browsing. Some of the data are not included in the existing world data portals (SuperMAG, INTERMAGNET). We give examples of using the database for the Arctic: study of irregular disturbances and waves of the Pc5/Pi3 range exciting intense geomagnetically induced currents; distortion of the pipe-to-soil potential during magnetic storms; ground support for radar observations of the ionosphere. To assess the regions most susceptible to geomagnetic hazard, we calculated a map with normalized telluric fields for a uniform magnetic disturbance with a unit amplitude and periods 100–1000 s. This map shows that the geological structure significantly affects the magnitude of the geoelectric fields generated by magnetic disturbances. The database is made publicly available on the anonymous FTP site [ftp://door.gcras.ru/ftp_anonymous/ARCTICA_Rus].

Keywords:
magnetic stations, Arctic, geomagnetic pulsations, databases, geomagnetically induced currents, telluric fields
Text
Publication text (PDF): Read Download
References

1. Alekseev D., Kuvshinov A. Palshin N. Compilation of 3D global conductivity model of the Earth for space weather applications. Earth Planet Space. 2015, vol. 67, no. 108. DOI: 10.1186/s40623-015-0272-5.

2. Aleshin I.M., Ivanov S.D., Koryagin V.N., Matveev I.V., Perederin F.V., Soloviev A.A., Kholodkov K.I. IT-infrastructure of geomagnetic observatory network. Geophys. Res. 2020, vol. 21, no. 3, pp. 50–65. DOI: 10.21455/gr2020.3-4. (In Russian).

3. Amiantov A.S., Odintsov V.I., Zaitzev A.N. The unmanned geophysical data collection platform based on the digital magnetometer CMVS-6. Physics of Earth and planetary interiors. 1990. Vol. 59. P. 61–65.

4. Amiantov A.S., Zaitsev A.N., Odintsov V.I., Petrov V.G. Variatsii magnitnogo polya Zemli — baza tsifrovykh dannykh magnitnykh observatorii Rossii za period 1984–2000. [Variations of the Earth’s magnetic field — a digital database of magnetic observatories in Russia for the period 1984–2000]. On CD-ROM. M.: IZMIRAN, 2001, 52 p. (In Russian).

5. Apatenkov S.V., Pilipenko V.A., Gordeev E.I., Viljanen A., Juusola L., Belakhovsky V.B., Sakharov Ya.A., Selivanov V.N. Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophys. Res. Lett. 2020, vol. 47, e2019GL086677. DOI: 10.1029/2019GL086677.

6. Bedrosian P.A., Love J.J. Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances. Geophys. Res. Lett. 2015, vol. 42, iss. 23, pp. 10160–10170. DOI: 10.1002/2015GL066636.

7. Belakhovsky V., Pilipenko V., Engebretson M., Sakharov Ya., Selivanov V. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J. Space Weather and Space Climate. 2019, vol. 9, no. A18. DOI: 10.1051/swsc/2019015.

8. Berdichevsky M.N., Dmitriev V.I. Modeli i metody magnitotelluriki [Models and methods of magnetotellurics]. Moscow, Nauchnyi Mir Publ., 2009, 680 p. (In Russian).

9. Berngardt O.I., Kurkin V.I., Kushnarev D.S., Grkovich K.V., Fedorov R.R., Orlov A.I., Kharchenko V.V. ISTP SB RAS decameter radars. Solar-Terr. Phys. 2020, vol. 6, no. 2, pp. 63–73. DOI: 10.12737/stp-62202006.

10. Boteler D.H. A new versatile method for modelling geomagnetic induction in pipelines. Geophys. J. International. 2013. Vol. 193. P. 98–109.

11. Boteler D.H., Trichtchenko L. Telluric influence on pipelines. Oil and Gas Pipelines: Integrity and Safety Handbook. Ed. R.W. Revie. John Wiley & Sons, Inc. 2015. P. 275–285. DOI: 10.1002/9781119019213.ch21.

12. Brasse H., Junge A. The influence of geomagnetic variations on pipelines and an application for large-scale magnetotelluric depth sounding. J. Geophys. 1984, vol. 55, no. 1, pp. 31–36.

13. Campbell W.H. Observation of electric currents in the Alaska oil pipeline resulting from auroral electrojet current sources. Geophys. J. Royal Astronomical Society. 1980, vol. 61, pp. 437–449.

14. Chelpanov M.A., Mager P.N., Klimushkin D.J., Mager O.V. Observing magnetospheric waves propagating in the direction of electron drift with Ekaterinburg decameter coherent radar. Solar-Terr. Phys. 2019, vol. 5, iss. 1, pp. 51–57. DOI: 10.12737/stp-51201907.

15. Chinkin V.E., Soloviev A.A., Pilipenko V.A., Engeb-retson M.J., Sakharov Ya.A. Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data. J. Atmos. Solar–Terr. Phys. 2021, vol. 212, 105514. DOI: 10.1016/j.jastp.2020.105514.

16. Connors M., Rostoker G., Sofko G., McPherron R.L., Henderson M.G. Ps 6 disturbances: relation to substorms and the auroral oval. Ann. Geophys. 2003, vol. 21, pp. 493–508.

17. Engebretson M.J., Steinmetz E.S., Posch J.L., Pilipenko V.A., Moldwin M.B., Connors M.G., Boteler D.H., Mann I.R., Hartinger M.D., Weygand J.M., Lyons L.R., Nishimura Y., Singer H.J., Ohtani S., Russell C.T., Fazakerley A., Kistler L.M. Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple-instrument observations. J. Geophys. Res.: Space Phys. 2019, vol. 124, pp. 7459–7476. DOI: 10.1029/2019JA026797.

18. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, A09213. DOI: 10.1029/2012JA017683.

19. Gvishiani A.D., Lukyanova R.Yu. Geoinformatics and observations of the Earth’s magnetic field: Russian segment. Fizika Zemli [Izvestiya, Physics of the Solid Earth]. 2015, no. 2, pp. 3–20. DOI: 10.7868/S0002333715020040. (In Russian).

20. Gvishiani A.D., Soloviev A.A., Sidorov R.V., Krasnoperov R.I., Grudnev A.A., Kudin D.V., Karapetyan J.K., Simonyan A.O. Successes of the organization of geomagnetic monitoring in Russia and the near abroad. Vestnik Otdeleniya nauk o Zemle RAN [Bull. of ONZ RAS]. 2018, vol. 10, NZ4001. DOI: 10.2205/2018NZ000357. (In Russian).

21. Gummow R., Eng P. GIC effects on pipeline corrosion and corrosion control systems. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, pp. 1755–1764. DOI: 10.1016/s1364-6826(02)00125-6.

22. Hejda P., Bochnicek J. Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during October–November 2003. Ann. Geophys. 2005, vol. 23, pp. 3089–3093.

23. Henriksen J.F., Elvik R., Gransen L. Telluric currents corrosion on buried pipelines, Proc. 8th Scandinavien Corrosion Congress. Helsinki, 1978, vol. II, pp. 167–176.

24. Ivonin A.A. Influence of the Earth’s geomagnetic field on corrosion protection at MGP of GAZPROM. Korroziya “Territorii Neftegaz” [Corrosion of “Neftegaz Territory”], 2015, no. 1, pp. 88–89. (In Russian).

25. Korja T., Engels M., Zhamaletdinov A.A., Kovtun A.A., Palshin N.A., Smirnov M.Yu., Tokarev A.D., Asming V.E., Vanyan L.L., Vardaniants I.L., BEAR Working Group. Crustal conductivity in Fennoscandia — a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth, Planets and Space. 2002, vol. 54, pp. 535–558. DOI: 10.1186/BF03353044.

26. Kuvshinov A., Grayver A., Tøffner-Clausen L., Olsen N. Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach. Earth, Planets and Space. 2021, vol. 73, p. 67. DOI: 10.1186/s40623-020-01341-9.

27. Lehtinen M., Pirjola R. Currents produced in earthed conductor networks by geomagnetically induced electric fields. Ann. Geophys. 1985, vol. 3, pp. 479–484.

28. Mullayarov V.A., Kozlov V.I., Grigoriev Yu.M., Romashchenko Yu.A. The current induced in the gas pipeline from a large magnetic disturbance 01.21.05. Science and Education. 2006, no. 1 (41), pp. 53–55. (In Russian).

29. Mursula K., Marsh D., Nandy D., Usoskin I. A review of Space Climate and an introduction to the papers of the JASTP special issue on Space Climate. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 179–181. DOI: 10.1016/j.jastp.2010.11.002.

30. Pilipenko V.A. Space weather impact on ground-based technological systems. Solar-Terr. Phys. 2021, vol. 7, no. 3, pp. 68–104. DOI: 10.12737/stp-73202106.

31. Pilipenko V., Belakhovsky V., Kozlovsky A., Fedorov E., Kauristie K. Determination of the wave mode contribution into the ULF pulsations from combined radar and magnetometer data: Method of apparent impedance. J. Atmos. Solar-Terr. Phys. 2012, vol. 77, pp. 85–95. DOI: 10.1016/j.jastp.2011.11.013.

32. Pilipenko V.A., Krasnoperov R.A., Soloviev A.A. Problems and prospects of geomagnetic research in Russia. Vestnik Otdeleniya nauk o Zemle RAN [Bull. of ONZ RAS]. 2019, vol. 11, NZ1103. DOI: 10.2205/2019NZ000362. (In Russian).

33. Pulkkinen A., Viljanen A., Pajunpaa K., Pirjola R. Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network. J. Applied Geophys. 2001, vol. 48, pp. 219–231.

34. Saito T. Long-period irregular magnetic pulsation Pi3. Space Sci. Rev. 1978, vol. 21, pp. 427–467.

35. Sakharov Ya.A., Yagova N.V., Pilipenko V.A. Pc5/Pi3 geomagnetic pulsations and geoinduced currents. Izvestiya RAN. Seriya fizicheskaya [Bull. of the Russian Academy of Sciences: Physics]. 2021, vol. 85, no. 3, pp. 445–450. DOI: 10.31857/s0367676521030236. (In Russian).

36. Schultz A. EMScope: A continental scale magnetotelluric observatory and data discovery resource. Data Sci. J. 2009, vol. 8, IGY6–IGY20. DOI: 10.2481/dsj.SS_IGY-009.

37. Shapka R. Geomagnetic effects on modern pipeline systems. Proc. Solar-Terrestrial Predictions Workshop. May 18–22, Ottawa, 1992, vol. 1, pp. 163–170.

38. Sokolova E.Yu., Kozyreva O.V., Pilipenko V.A., Sakharov Ya.A., Epishkin D.V. Variations in geomagnetic and telluric fields in the northwestern regions of Russia under space weather disturbances: Relationship with the geoelectric structure and induced currents in power transmission lines. Geo-fizicheskie protsessy i biosfera [Geophysical Processes and Biosphere]. 2019, vol. 18, no. 4, pp. 66–85. DOI: 10.21455/GPB2019.4-7. (In Russian).

39. Trichtchenko L., Boteler D.H. Modelling of geomagnetic induction in pipelines. Ann. Geophys. 2002, vol. 20, pp. 1063–1072. DOI: 10.5194/angeo-20-1063-2002.

40. Viljanen A., Pulkkinen A., Pirjola R., Pajunpaa K., Posio P., Koistinen A. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline. Space Weather, 2006, vol. 4, S10004. DOI: 10.1029/2006SW000234.

41. Vorobev A.V., Pilipenko V.A., Sakharov Ya.A., Selivanov V.N. Statistical relationships between variations of the geomagnetic field, auroral electrojet and geomagnetically induced currents. Solar-Terr. Phys. 2019, vol. 5, no. 1, pp. 35–42. DOI: 10.12737/stp-512019052018.

42. Zaitsev A.N. Project “Geomagnetic Meridian”. Vestnik Akademii nauk SSSR [Bull. the Academy of Sciences of the USSR]. 1974, No. 4, pp. 92–94. (In Russian).

43. URL: ftp://door.gcras.ru/ftp_anonymous/ARCTICA_Rus (accessed February 10, 2022).

44. URL: http://db.izmiran.nw.ru (accessed February 10, 2022).

45. URL: https://supermag.jhuapl.edu (accessed February 10, 2022).

46. URL: https://space.fmi.fi/image (accessed February 10, 2022).

47. URL: http://www.serc.kyushu-u.ac.jp/magdas (accessed February 10, 2022).

48. URL: http://ckp.gcras.ru (accessed February 10, 2022).

49. URL: https://omniweb.gsfc.nasa.gov/vitmo/cgm.html (accessed February 10, 2022).

50. URL: https://www.ngdc.noaa.gov/IAGA/vdat/IAGA2002/iaga2002format.html (accessed February 10, 2022).

51. URL: https://www.intermagnet.org (accessed February 10, 2022).

52. URL: https://omniweb.gsfc.nasa.gov (accessed February 10, 2022).

53. URL: http://sdrus.iszf.irk.ru (accessed February 10, 2022).

54. URL: https://arctic-mipt.com (accessed February 10, 2022).

55. URL: https://doi.org/10.2205/Rus-Arctic-1-min-DB (accessed February 10, 2022).

Login or Create
* Forgot password?