RECOGNITION OF EARTHQUAKE-PRONE AREAS IN THE ALTAI-SAYAN-BAIKAL REGION BASED ON THE MORPHOSTRUCTURAL ZONING
Abstract and keywords
Abstract (English):
The goal of the study is to identify the possible locations of strong M6+ earthquakes in the Altai-Sayan-Baikal region. The first stage of the study is compiling the morphostructural map of the region by means of the morphostructural zoning method (MSZ). The map presents the hierarchical block structure of the region, the network of morphostructural lineaments bounding the blocks, and loci of the nodes forming around lineament intersections. Epicenters of M6+ earthquakes reported by earthquake catalogues nucleate at nodes. We apply the pattern recognition approach to identify among all nodes seismogenic nodes D capable of generating M6+ earthquakes. This is done based on the description of the nodes by a set of geological and geophysical characteristics measured uniformly for all nodes. The result of the pattern recognition is twofold: (i) the rule of recognition that allows to recognize D nodes among the whole set of nodes; (ii) the actual division of nodes according to this rule into separate two classes: seismogenic D nodes and N nodes where the target events are unlikely. In the region under consideration, the whole set of 97 nodes has been divided into 33 D nodes and 64 N nodes. The target earthquakes have not yet been recorded at 17 D nodes indentified in this work. These susceptible nodes are located on the high rank lineaments separating major morphostructures of the region. High seismic potential of some of such nodes is confirmed by paleoseismic features defined in the region by other researchers.

Keywords:
The reported study was funded by RFBR, project number 20-05-00171, Altai-Sayan-Baikal region, morphostructural zoning, pattern recognition, seismogenic nodes
Text
Publication text (PDF): Read Download
References

1. Alekseevskaya, E. I., A. M. Gabrielov, A. D. Gvishiani, et al. (1977) , Formal morphostructural zoning of mountain territories, J. Geophys., 43, p. 227-233.

2. Arzhannikova, A. V., S. G. Arzhannikov (1999) , Seismotectonic deformations in the western part of the Tunka Goltsov and modern exogeodynamics, Geology and Geophysics, 40, p. 231-234.

3. Arzhannikov, S. G. (2000) , Paleoseismic features in the zone of influence of the Ottugino-Azas fault (Eastern Tuva), Geology and Geophysics, 41, p. 1499-1509.

4. Arzhannikov, S. G. (2003) , Main active faults, kinematics and strong paleoearthquakes in the eastern part of the Altai-Sayan mountainous region , Stress-strain state and seismicity of the lithosphere. Proceedings of the All-Russian meeting, Irkutsk, IZK SB RAS, August 26-29, 2003, Publishing house of SB RAS, Novosibirsk, Russia.

5. Arzhannikov, S. G., A. V. Arzhannikova (2011) , The Late Quaternary geodynamics of the Hyargas Nuur basin and bordering scarps (Western Mongolia), Russian Geology and Geophysics, 52, no. 2, p. 220-229, https://doi.org/10.1016/j.rgg.2010.12.016.

6. Bhatia, S. C., T. R. K. Chetty, M. Filimonov, et al. (1992) , Identification of potential areas for the occurrence of strong earthquakes in Himalayan arc region, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 101, no. 4, p. 369-385.

7. Buslov, M. M., D. A. Kokh, J. De Grave (2008) , Mesozoic-Cenozoic tectonics and geodynamics of Altai, Tien Shan and Northern Kazakhstan, from apatite fission-track date, Russian Geology and Geophysics, 49, no. 9, p. 648-654, https://doi.org/10.1016/j.rgg.2008.01.006.

8. Buslov, M. M., A. V. Travin, V. G. Kulikova (2013) , Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area, Russian Geology and Geophysics, 54, no. 10, p. 1250-1271, https://doi.org/10.1016/j.rgg.2013.09.009.

9. Caputo, M., V. Keilis-Borok, E. Oficerova, et al. (1980) , Pattern recognition of earthquake-prone areas in Italy, Phys. Earth Planet Int., 21, p. 305-320.

10. Chunga, K., A. Michetti, A. Gorshkov, et al. (2010) , Identificacion de nudos sismogenicos capaces de generar potenciales terremotos de M>6 y M>6.5 en la Regi\\'{o}n costera y cadenas montanosas de los Andes Septentrionales del Ecuador, Revista Tecnologica ESPOL - RTE, 23, p. 61-89.

11. Cisternas, A., P. Godefroy, A. Gvishiani, et al. (1985) , A dual approach to recognition of earthquake prone areas in the western Alps, Annales Geophysicae, 3, p. 249-270.

12. Deev, E. V., I. D. Zolnikov, S. V. Goltsova, et al. (2012) , Neotectonics and paleoseismicity of the Lower Katun valley (Gorny Altai), Russian Geology and Geophysics, 53, no. 9, p. 883-894, https://doi.org/10.1016/j.rgg.2012.07.004.

13. Deev, E. V., S. V. Goltsova, A. A. Emanov, et al. (2013) , Traces of paleoearthquakes in the Quaternary deposits of intermontane basins in central Gorny Altai, Russian Geology and Geophysics, 54, no. 3, p. 312-323, https://doi.org/10.1016/j.rgg.2013.02.006.

14. Dergunov, L. (1989) , Caledonides of the Central Asia, 191 pp., Nauka, Moscow, Russia.

15. Dobretsov, N. L., N. A. Berzin, M. M. Buslov, et al. (1995) , General problems of the evolution of the Altai region and the relationship between the structure of the basement and the development of the neotectonic structure, Geology and Geophysics, 36, no. 10, p. 5-19.

16. Dobretsov, N. L., A. N. Vasilevsky, N. N. Nevedrova, et al. (2016) , Cenozoic history of topography in Southeastern Gorny Altai: Thermochronology and resistivity and gravity records, Russian Geology and Geophysics, 57, no. 11, p. 1525-1534, https://doi.org/10.1016/j.rgg.2016.10.001.

17. Dyment, J., V. Lesur, M. Hamoudi (2015) , World Digital Magnetic Anomaly Map version 2.0., Thesis, WDMAM, France (http://www.wdmam.org).

18. Gelfand, I. M., Sh. A. Guberman, M. L. Izvekova, et al. (1972) , Criteria of high seismicity determined by pattern recognition, Tectonophysics, 13, p. 415-422.

19. Gelfand, I. M., Sh. A. Guberman, V. I. Keilis-Borok, et al. (1976) , Pattern recognition applied to earthquake epicenters in California, Phys. Earth Planetary Interior, 11, p. 227-283.

20. Gorshkov, A. I., I. V. Kuznetsov, A. A. Soloviev, et al. (2000) , Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria, Pure and Applied Geophysics, 157, no. 1-2, p. 79-95, https://doi.org/10.1007/PL00001101.

21. Gorshkov, A. I., G. F. Panza, A. A. Soloviev, et al. (2002) , Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily, Journal of Seismology and Earthquake Engineering, 4, no. 1, p. 1-24.

22. Gorshkov, A., V. Kossobokov, A. Soloviev (2003a) , Recognition of Earthquake-Prone Areas, Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, edited by Keilis-Borok V., Soloviev A., p. 239-310, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-05298-3_6.

23. Gorshkov, A. I., G. F. Panza, A. A. Soloviev, et al. (2003b) , Recognition of the strong earthquake-prone areas (M>=6.0) within the mountain belts of Central-Europe, Revue Roumaine de Geophysique, 47, p. 30-41.

24. Gorshkov, A. I., G. F. Panza, A. A. Soloviev, et al. (2004) , Identification of seismogenic nodes in the Alps and Dinarides, Bolletino della Societa Geologica Italiana, 123, p. 3-18.

25. Gorshkov, A. I., M. Mokhtari, E. P. Piotrovskaya (2009a) , The Alborz region: Identification of seismogenic nodes with morphostructural zoning and pattern recognition, J. Seismolog. Earthq. Engineering, 11, p. 1-15.

26. Gorshkov, A. I., G. F. Panza, A. A. Soloviev, et al. (2009b) , Delineation of the geometry of nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M>=6), Terra Nova, 21, p. 257-264, https://doi.org/10.1111/j.1365-3121.2009.00879.x.

27. Gorshkov, A. I., A. A. Soloviev, M. J. Jim\\'{e}nez, et al. (2010) , Recognition of earthquake-prone areas (M>=5.0) in the Iberian Peninsula, Rendiconti Lincei, 21, p. 131-162, https://doi.org/10.1007/s12210-010-0075-3.

28. Gorshkov, A. I. (2010) , Recognition of the Strong-Earthquake Prone Areas in the Alpine-Himalaya Belt, Computational Seismology, 40, p. 472 (in Russian).

29. Gorshkov, A., I. A. Parvez, O. Novikova, et al. (2012) , Recognition of earthquake-prone areas in the Himalaya: validity of the results, International Journal of Geophysics, 2012, p. 5, https://doi.org/10.1155/2012/419143.

30. Gorshkov, A., A. Soloviev, Yu. Zharkikh (2017) , A Morphostructural Zoning of the Mountainous Crimea and the Possible Locations of Future Earthquakes, J. Volcanolog. Seismolog., 11, p. 407-412, https://doi.org/10.1134/S0742046317060021.

31. Gorshkov, A., O. Novikova (2018) , Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap, Acta Geophysica, 66. Is. 5, p. 843-853, https://doi.org/10.1007/s11600-018-0177-3.

32. Gorshkov, A., Y. Gaudemer (2019) , Seismogenic nodes defined with pattern recognition in the French Massif Central, J. Iberian Geol., 45, p. 63-72, https://doi.org/10.1007/s41513-018-0087-x.

33. Gorshkov, A. I., H. M. Hassan, O. V. Novikova (2019) , Seismogenic nodes (M>=5.0) in Northeast Egypt and implications for seismic hazard assessment, Pure Appl. Geophys., 176, p. 593-610, https://doi.org/10.1007/s00024-018-2012-9.

34. Gorshkov, A. I., O. V. Novikova, I. Gaudemer (2020) , Strong (M>=7.0) earthquake-prone areas in Hellenides, Greece, Izv., Phys. Solid Earth, 56, p. 45-52, https://doi.org/10.1134/S1069351320010036.

35. Gvishiani, A., A. Soloviev (1981) , Association of the epicenters of strong earthquakes with the intersections of morphostructural lineaments in South America, Computational Seismology, 13, p. 46-50.

36. Gvishiani, A. D., A. A. Soloviev (1984) , Recognition of places on the Pacific coast of the South America where strong earthquakes may occur, Earthq. Predict. Res., 2, p. 237-243.

37. Gvishiani, A., A. Gorshkov, V. Kossobokov, et al. (1987) , Identification of seismically dangerous zones in the Pyrenees, Annales Geophysicae, 6, p. 681-690.

38. Gvishiani, A. D., A. I. Gorshkov, E. Ya. Rantsman, et al. (1988) , Recognition of Earthquake-Prone Areas in the Regions of Moderate Seismicity, 240 pp., Nauka, Moscow, Russia.

39. Gvishiani, A. D., A. A. Soloviev, B. A. Dzeboev (2020) , Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review, Izv., Phys. Solid Earth, 56, p. 1-23, https://doi.org/10.1134/S1069351320010048.

40. Imaev, V. S., L. P. Imaeva, O. P. Smekalin, et al. (2006) , Architectonics of the Altai region and its potential seismic hazard, Active geological and geophysical processes in the lithosphere. Methods, means and results of the study. Materials of the XII International Conference, Voronezh, September 18-23, 2006, Voronezh State University Publishing House, Voronezh, Russia.

41. Kochetkov, V. M., S. D. Khilko, A. V. Chipizubov, et al. (1993) , Strong Earthquakes, Seismotectonics and Seismicity of the Khubsugul region, edited by Levshin, A. L., p. 70-79, Nauka, Novosibirsk, Russia (in Russian).

42. Kondorskaya, N. V., P. N. Shebalin (1977) , A New Catalog of Strong Earthquakes in the USSR from Ancient Times to 1975, 536 pp., Nauka, Moscow, Russia (in Russian).

43. Kondorskaya, N., P. Shebalin, Y. Khrometskaya, et al. (1982) , New Catalog of the Strong Earthquakes of the USSR from Ancient Times through 1977, 608 pp., WDC A for Solid Earth Geophysics, NOAA, National Geophysical Data Center, Boulder, Colorado, USA.

44. Kondorskaya, N. V., I. V. Gorbunova, O. V. Kireev, et al. (1993) , On compiling a unified catalog of strong earthquakes in Northern Eurasia using instrumental data, Seismicity and Seismic Zoning of Northern Eurasia, edited by Ulomov, V. I., p. 70-79, Minnauki Rossii, Moscow, Russia (in Russian).

45. Kossobokov, V. G. (1983) , Recognition of the sites of strong earthquakes in East Central Asia and Anatolia by Hamming's method, Computational Seismology, 14, p. 78-82.

46. Lukina, N. V. (1996) , Altai active faults and seismicity, Geology and Geophysics, 37, p. 71-74.

47. Lunina, O. V., A. S. Gladkov, A. A. Gladkov (2012) , Systematization of Active Faults for the Assessment of the Seismic Hazard, Russ. J. of Pac. Geol., 6, p. 42-51, https://doi.org/10.1134/S1819714012010101.

48. Molnar, P., P. Tapponnier (1975) , Cenozoic tectonics of Asia: Effect of a continental collision, Science, 189, no. 4201, p. 419-425, https://doi.org/10.1126/science.189.4201.419.

49. Novikov, I. S. (2004) , Morphotectonics of Altai, 313 pp., Publishing House of SB RAS, Branch "Geo", Novosibirsk, Russia (in Russian).

50. Novikova, O., A. Gorshkov (2013) , Recognition of earthquake prone areas (M>=6.0 ) in the Kopet Dagh region using the GIS technology, J. Seismolog. Earthq. Engineering, 15, p. 101-109.

51. Novikova, O., A. Gorshkov (2016) , Seismogenic nodes defined by pattern recognition in the central part of the Alpine-Himalayan belt, Bull. Geolog. Soc. Greece, 50, p. 1426-1432, https://doi.org/10.12681/bgsg.11855.

52. Novikova, O. V., A. I. Gorshkov (2018) , High seismicity intersections of morphostructural lineaments: the Black-Sea-Caspian region, J. Volcanolog. Seismolog, 12, p. 379-387, https://doi.org/10.1134/S0742046318060064.

53. Peresan, A., E. Zuccolo, F. Vaccari, et al. (2011) , Neo-deterministic seismic hazard and pattern recognition techniques: Time-dependent scenarios for North-Eastern Italy, Pure Appl. Geophys., 168, p. 583-607, https://doi.org/10.1007/s00024-010-0166-1.

54. Peresan, A., A. Gorshkov, A. Soloviev, et al. (2015) , The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment, Bollettino di Geofisica Teorica ed Applicata, 56, p. 295-328, https://doi.org/10.4430/bgta0141.

55. Rantsman, E. Ya. (1979) , Locations of the Earthquakes and Morphostructure of Mountain Regions, 171 pp., Nauka, Moscow, Russia (in Russian).

56. Rogozhin, E. A., S. G. Platonova (2002) , Focal Zones of Strong Earthquakes in Mountainous Altai in the Holocene, 130 pp., UIPE RAS, Moscow, Russia (in Russian).

57. Sabaka, T. J., N. Olsen, M. E. Purucker (2004) , Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data, Geophys. J. Int., 159, p. 521-547, https://doi.org/10.1111/j.1365-246X.2004.02421.x.

58. Sankov, V., A. Lukhnev, A. Miroshnitchenko, et al. (2014) , Contemporary horizontal movements and seismicity of the South Baikal Basin (Baikal Rift System), Izvestiya, Physics of the Solid Earth, 50, p. 785-794, https://doi.org/10.1134/S106935131406007X.

59. Sherman, S. I., M. Jin, E. A. Gorbunova (2015) , Recent strong earthquakes in Central Asia: Regular tectonophysical features of locations in the structure and geodynamics of the lithosphere. Part1. Main geodynamic factors predetermining locations of strong earthquakes in the structure of the lithosphere in Central Asia, Geodynamics and Tectonophysics, 6, p. 409-436, https://doi.org/10.5800/GT-2015-6-4-0188 (in Russian).

60. Soloviev, A. A., O. V. Novikova, A. I. Gorshkov, et al. (2013) , Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies, Doklady Earth Sciences, 450, p. 658-660, https://doi.org/10.1134/S1028334X13060159.

61. Soloviev, A. A., A. D. Gvishiani, A. I. Gorshkov, et al. (2014) , Recognition of earthquake-prone areas: Methodology and analysis of the results, Izv., Phys. Solid Earth, 50, p. 151-168, https://doi.org/10.1134/S1069351314020116.

62. Soloviev, Al. A., A. I. Gorshkov, An. A. Soloviev (2016) , Application of the data on the lithospheric magnetic anomalies in the problem of recognizing the earthquake prone areas, Izv., Phys. Solid Earth, 52, p. 803-809, https://doi.org/10.1134/S1069351316050141.

63. Trifonov, V. G., O. V. Soboleva, R. V. Trifonov, et al. (1979) , Modern Geodynamics of the Alpine-Himalayan Collision Belt, 224 pp., Geos, Moscow, Russia (in Russian).

64. Wells, D. L., K. J. Coppersmith (1994) , New empirical relationships among magnitude, rupture length, rupture width, and surface displacement, Bulletin of the Seismological Society of America, 84, p. 974-1002.

Login or Create
* Forgot password?