student
Moskva, Moscow, Russian Federation
In this article, the study of the geometry of the flat shapes reflection from curved lines located in the plane of these shapes continues. The paper is devoted to a more detailed description of reflection from the analytical geometry point of view. In addition, the range of proposed tasks has been significantly expanded. An algorithm for reflecting zero-dimensional and one-dimensional objects from plane curves is compiled, and corresponding illustrations are given. For the first time, the authors have obtained equations that allow us to construct reflections of a point from second-order curves: a circle, an ellipse, a parabola and a hyperbola, as well as from high-order curves: Bernoulli lemniscates and cardioids [17], [24], [13], [25], [23], [22]. In addition, equations for the reflection results of one-dimensional objects: a segment and a circle, from the same plane curves were obtained. Similar studies are being conducted in the works [2], [1], [32], [28], [3], [4]. All equations are accompanied by blueprints of special cases of reflections obtained using the Wolfram Mathematica mathematical package [18], [19]. In addition, the application contains the source codes, which gives the reader to configure the reflection parameters themselves on condition having access this program, as well as visually assess the change in the reflection pattern when changing these parameters for various types of flat mirrors. This article demonstrates the possibilities that the obtained equations provide, and the prospects for further work, which consist in obtaining new equations of objects reflected from other flat mirrors.
reflection geometry, reflection on a plane, curved mirrors, parametric equations of curves, Wolfram Mathematica
1. Antonova I.V. Matematicheskoe opisanie vrascheniya tochki vokrug ellipticheskoy osi v nekotoryh chastnyh sluchayah [Tekst] / I.V. Antonova, I.A. Beglov, E.V. Solomonova // Geometriya i grafika. – 2019. – T. 7. – №. 3. – S. 36-50. - DOI: 10.12737/article_5dce66dd9fb966.59423840
2. Antonova I.V. Matematicheskoe opisanie chastnogo sluchaya kvazivrascheniya fokusa ellipsa vokrug ellipticheskoy osi [Tekst] / I.V. Antonova, E.V. Solomonova, N.S. Kadykova // Geometriya i grafika. – 2021. – T. 9. – №. 1. – S. 39-45. - DOI: 10.12737/2308-4898-2021-9-1-39-45
3. Beglov I.A. Matematicheskoe opisanie metoda vrascheniya tochki vokrug krivolineynoy osi vtorogo poryadka [Tekst] / I.A. Beglov, V.V. Rustamyan, I.V. Antonova // Geometriya i grafika. – 2018. – T. 6. – №. 4. – S. 39-46. – DOI: 10.12737/article_5c21f6e832b4d2.25216268
4. Beglov I.A. Metod vrascheniya geometricheskih ob'ektov vokrug krivolineynoy osi [Tekst] / I.A. Beglov, V.V. Rustamyan // Geometriya i grafika. – 2017. – T. 5. – №. 3. – S. 45-50. - DOI: 10.12737/article_59bfa4eb0bf488.99866490
5. Beklemishev D.V. Kurs analiticheskoy geometrii i lineynoy algebry: Uchebnik [Tekst] / D.V. Beklemishev // 13-e izd., ispr. – SPb.: Izdatel'stvo «Lan'». – 2015. – 448 s.
6. Berdyshev V. I. Approksimaciya funkciy, szhatie chislennoy informacii, prilozheniya [Tekst] / V.I. Berdyshev, L.V. Petrak // – Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut matematiki i mehaniki im. NN Krasovskogo Ural'skogo otdeleniya Rossiyskoy akademii nauk. – 1999. – 295 s.
7. Blinova I.V. Krivye, zadannye parametricheski i v polyarnyh koordinatah [Tekst] / I.V. Blinova, I.Yu. Popov // SPb.: Universitet ITMO. – 2017. – 55 s.
8. Bugrov Ya.S. Vysshaya matematika [Tekst] V 3 t. T. 1: Elementy lineynoy algebry i analiticheskoy geometrii / Ya.S. Bugrov, S.M. Nikol'skiy // M.: Drofa. – 2004. – 288 s.
9. Bugrov Ya.S. Vysshaya matematika [Tekst] V 3 t. T. 2: Differencial'noe i integral'noe ischislenie / Ya.S. Bugrov, S.M. Nikol'skiy // M.: Drofa. – 2004. – 512 s.
10. Vatolin D.S. Fraktal'noe szhatie izobrazheniy [Tekst] / D.S. Vatolin // ComputerWorld-Rossiya. – 1996. – №. 6 (23). – S. 21-28.
11. Vinogradov I.M. Matematicheskaya enciklopediya [Tekst] V 5 t. T. 3: Koordinaty – Odnochlen / I.M. Vinogradov // Sov. encikl. – 1982. – 592 s.
12. Vinogradov I.M. Elementy vysshey matematiki. (Analiticheskaya geometriya. Differencial'noe ischislenie. Osnovy teorii chisel). Ucheb. dlya vuzov. [Tekst] / I.M. Vinogradov // M.: Vyssh. shk. – 1999. – 511 s.
13. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. – 2020. – T. 8. – №. 2. – S. 3-32. - DOI: 10.12737/2308-4898-2020-3-32
14. Gordon V.O. Kurs nachertatel'noy geometrii [Tekst] / V.O. Gordon, M.A. Semencov-Ogievskiy // M.: Vysshaya shkola. – 1998. – 272 s.
15. Zhiharev L.A. Otrazhenie ot krivolineynyh zerkal v ploskosti [Tekst] / L.A. Zhiharev // Geometriya i grafika. – 2019. – T. 7. – №. 1. – S. 46-54. - DOI: 10.12737/article_5c9203adb22641.01479568
16. Zhiharev L.A. Ploskie otrazheniya ot krivyh [Tekst] / L.A. Zhiharev, Yu.S. Karpova // Zhurnal estestvennonauchnyh issledovaniy. – 2020. – T. 5. – №. 4. – S. 52-58.
17. Ivaschenko A.V. Obschiy analiz formy linii peresecheniya dvuh odnotipnyh poverhnostey vtorogo poryadka [Tekst] / A.V. Ivaschenko, D.A. Vavanov // Geometriya i grafika. – 2020. – T. 8. – №. 4. – S. 24-34. - DOI: 10.12737/2308-4898-2021-8-4-24-34
18. Ignat'ev S.A. Vizualizaciya zadach nachertatel'noy geometrii posredstvom Wolfram Mathematica [Tekst] / S.A. Ignat'ev, A.I. Folomkin, E.H. Muratbakeev // Geometriya i grafika. – 2020. – T. 8. – №. 4. – S. 74-84. - DOI: 10.12737/2308-4898-2021-8-4-74-84
19. Ignat'ev S.A. Funkcional'nye vozmozhnosti sredy Wolfram Mathematica dlya vizualizacii krivyh liniy i poverhnostey [Tekst] / S.A. Ignat'ev, A.I. Folomkin, E.H. Muratbakeev // Geometriya i grafika. – 2021. – T. 9. – №. 1. – S. 29-38. - DOI: 10.12737/2308-4898-2021-9-1-29-38
20. Konopackiy E.V. Modelirovanie approksimiruyuschego 16-tochechnogo otseka poverhnosti otklika primenitel'no k resheniyu neodnorodnogo uravneniya teploprovodnosti [Tekst] / E.V. Konopackiy // Geometriya i grafika. – 2019. – T. 7. – №. 2. – S. 39-46. - DOI: 10.12737/article_5d2c1a551a22c5.12136357
21. Korotkiy V.A. Approksimaciya fizicheskogo splayna s bol'shimi progibami [Tekst] / V.A. Korotkiy, I.G. Vitovtov // Geometriya i grafika. – 2021. – T. 9. – №. 1. – S. 3-19. - DOI: 10.12737/2308-4898-2021-9-1-3-19
22. Korotkiy V.A. Graficheskie algoritmy rekonstrukcii krivoy vtorogo poryadka, zadannoy mnimymi elementami [Tekst] / V.A. Korotkiy, A.G. Girsh // Geometriya i grafika. – 2016. – T. 4. – №. 4. – S. 19-30. - DOI: 10.12737/22840
23. Korotkiy V.A. Krivye vtorogo poryadka na ekrane komp'yutera [Tekst] / V.A. Korotkiy, E.A. Usmanova // Geometriya i grafika. – 2018. – T. 6. – №. 2. – S. 100-112. - DOI: 10.12737/article_5b55a829cee6c0.74112002
24. Korotkiy V.A. Kubicheskie krivye v inzhenernoy geometrii [Tekst] / V.A. Korotkiy // Geometriya i grafika. – 2020. – T. 8. – №. 3. – S. 3-24. - DOI: 10.12737/2308-4898-2020-3-24
25. Korotkiy V.A. Mnimye pryamye v dekartovoy sisteme koordinat [Tekst] / V.A. Korotkiy // Geometriya i grafika. – 2019. – T. 7. – №. 4. – S. 5-17. - DOI: 10.12737/2308-4898-2020-5-17
26. Markushevich A.I. Zamechatel'nye krivye [Tekst] / A.I. Markushevich // M.: Gostehizdat. – 1952. – 32 s.
27. Mikisha A.M. Tolkovyy matematicheskiy slovar'. Osnovnye terminy: ok. 2500 terminov [Tekst] / A.M. Mikisha, V.B. Orlov; pod red. A.P. Savina // 2-e izd., ster. – M.: Russkiy yazyk. – 1989. – 240 s.
28. Panchuk K.L. Geometricheskaya model' generacii semeystva konturno-parallel'nyh liniy dlya avtomatizirovannogo rascheta traektorii rezhuschego instrumenta [Tekst] / K.L. Panchuk, T.M. Myasoedova, I.V. Krysova // Geometriya i grafika. – 2019. – T. 7. – №. 1. – S. 3-13. - DOI: 10.12737/article_5c92012c51bba1.17153893
29. Pis'mennyy D.T. Konspekt lekciy po vysshey matematike: polnyy kurs [Tekst] / D.T. Pis'mennyy // 4-e izd. – M.: Ayris-press. – 2006. – 608 s.
30. Prosis D. Fraktaly i szhatie dannyh [Tekst] / D. Prosis // PC Magazine. – 1994. – S. 289.
31. Rodzhers D. Matematicheskie osnovy mashinnoy grafiki: Per. s angl. [Tekst] / D. Rodzhers, Dzh. Adams // M.: Mir. – 2001. – 604 s.
32. Ryazanov S.A. Analiticheskie zavisimosti kinematicheskogo formoobrazovaniya nachal'nyh poverhnostey elementov chervyachnoy peredachi [Tekst] / S.A. Ryazanov, M.K. Reshetnikov // Geometriya i grafika. – 2019. – T. 7. – №. 2. – S. 65-75. - DOI: 10.12737/article_5d2c2dda42fda7.79858292
33. Sabitov I.H. Priblizhenie ploskih krivyh krugovymi dugami [Tekst] / I.H. Sabitov, A.V. Slovesnov // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. – 2010. – T. 50. – №. 8. – S. 1347-1356.
34. Savelov A.A. Ploskie krivye. Sistematika, svoystva, primeneniya. (Spravochnoe rukovodstvo) [Tekst] / A.A. Savelov; pod red. A.P. Nordena // Gosudarstvennoe izdatel'stvo fiziko-matematicheskoy literatury. – 1960. – 293 s.
35. Yurkov V.Yu. Approksimaciya mnozhestv pryamyh na ploskosti [Tekst] / V.Yu. Yurkov // Geometriya i grafika. – 2019. – T. 7. – №. 3. – S. 60-69. - DOI: 10.12737/article_5dce6cf7ae1d70.85408915
36. Gray A. Modern Differential Geometry of Curves and Surfaces with Mathematica [Tekst] / A. Gray, E. Abbena, S. Salamon // 3rd Edition. – Chapman and Hall/CRC. – 2006. – 1016 s.
37. Hastings C. Hands-on Start to Wolfram Mathematica and Programming with the Wolfram Language [Tekst] / C. Hastings, K. Mischo, M. Morrison // 3rd Edition. – Wolfram Media, Inc. – 2020. – 553 s.
38. Lockwood E.H. A book of curves. [Tekst] / E.H. Lockwood // Cambridge University Press. – 1967. – 199 s.
39. Torrence B.F. The Student's Introduction to Mathematica and the Wolfram Language [Tekst] / B.F. Torrence, E.A. Torrence // 3rd Edition. – Cambridge University Press. – 2019. – 544 s.
40. Wolfram S. An elementary introduction to the Wolfram language [Tekst] / S. Wolfram // Wolfram Media, Inc. – 2017. – 340 s.