Moskva, Moscow, Russian Federation
Tiling of three-dimensional space is a very interesting and not yet fully explored type of tiling. Tiling by convex polyhedra has been partially investigated, for example, works [1, 15, 20] are devoted to tiling by various tetrahedra, once tiling realized by Platonic, Archimedean and Catalan bodies. The use of tiling begins from ancient times, on the plane with the creation of parquet floors and ornaments, in space - with the construction of houses, but even now new and new areas of applications of tiling are opening up, for example, a recent cycle of work on the use of tiling for packaging information [17]. Until now, tiling in space has been considered almost always by faceted bodies. Bodies bounded by compartments of curved surfaces are poorly considered and by themselves, one can recall the osohedra [14], dihedra, oloids, biconuses, sphericon [21], the Steinmetz figure [22], quasipolyhedra bounded by compartments of hyperbolic paraboloids described in [3] the astroid ellipsoid and hyperbolic tetrahedra, cubes, octahedra mentioned in [6], and tiling bodies with bounded curved surfaces was practically not considered, except for the infinite three-dimensional Schwartz surfaces, but they were also considered as surfaces, not as bodies., although, of course, in each such surface, you can select an elementary cell and fill it with a body, resulting in a geometric cell. With this work, we tried to eliminate this gap and described approaches to identifying geometric cells bounded by compartments of curved surfaces. The concept of tightly packed frameworks is formulated and an approach for their identification are described. A graphical algorithm for identifying polyhedra and quasipolyhedra - geometric cells are described.
tiling, parquet, geometric cells, geometric honeycombs, frames
1. Bonchkovskiy R.N. Zapolnenie prostranstva tetraedrami [Tekst] / R.N. Bonchkovskiy // Sbornik statey po elementarnoy i nachalam vysshey matematiki – M.-L.: Mat. pros., 1935. – Seriya 1. – Vyp. 4. – S. 26–40.
2. Vasil'eva V.N. Zolotoe sechenie i zolotye pryamougol'niki pri postroenii ikosaedra, dodekaedra i tel arhimeda, osnovannyh na nih [Tekst] / V.N. Vasil'eva // Geometriya i grafika. – 2019. – T. 7. – № 2. – S. 47-55 – DOI: 10.12737/article_5d2c1ceb9f91b1.21353054.
3. Efremov A.V. «Pravil'nye» mnogopsevdogranniki, obrazovannye otsekami giperbolicheskih paraboloidov. [Tekst] / A.V. Efremov // Zhurnal tehnicheskih issledovaniy. – 2020. – T. 6. № 2. – S. 21-28.
4. Zhiharev L.A. Fraktaly v trehmernom prostranstve. i-fraktaly [Tekst] / L.A. Zhiharev // Geometriya i grafika. – 2017. – T. 5. – № 3. – S. 51-66. – DOI: 10.12737/article_59bfa55ec01b38.55497926.
5. Ivaschenko A.V. O vliyanii parametrov yadra na formoobrazovanie poliedrov, poluchennyh proektivograficheskim metodom [Tekst] / A.V. Ivaschenko, T.M. Kondrat'eva // Geometriya i grafika. – 2019. – T. 7. – № 4. – S. 57-64. – DOI: 10.12737/2308-4898-2020-57-64.
6. Krivoshapko S.N., Ivanov V.N. Enciklopediya analiticheskih poverhnostey [Tekst] / S.N. Krivoshapko, V.N. Ivanov. – M.: Librokom, 2019. – 560 s.
7. Krivoshapko S.N., Ivanov V.N., Halabi S.M. Analiticheskie poverhnosti: Materialy po geometrii 500 poverhnostey i informaciya k raschetu na prochnost' tonkih obolochek. Nauchnoe izdanie [Tekst] / S.N. Krivoshapko, V.N. Ivanov, S.M. Halabi. – M.: Nauka, 2006. – 539 s.
8. Romanova V.A. Vizualizaciya pravil'nyh mnogogrannikov v processe ih obrazovaniya [Tekst] / V.A. Romanova // Geometriya i grafika. – 2019. – T. 7. – № 1. – S. 55-67. – DOI: 10.12737/article_5c91ffd0916d52.90296375.
9. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 1 [Tekst] / N.A. Sal'kov // Geometriya i grafika. – 2018. – T. 6. – № 4. – S. 20-31. – DOI: 10.12737/article_5c21f4a06dbb74.56415078.
10. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 2 [Tekst] / N.A. Sal'kov // Geometriya i grafika. – 2019. – T. 7. – № 1. – S. 14-27. – DOI: 10.12737/article_5c9201eb1c5f06.47425839.
11. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 3 [Tekst] / N.A. Sal'kov // Geometriya i grafika. – 2019. – T. 7. – № 2. – S. 13-27. – DOI: 10.12737/article_5d2c170ab37810.30821713.
12. Tuzhilin A.A., Fomenko A.T. Elementy geometrii i topologii minimal'nyh poverhnostey [Tekst] / A.A. Tuzhilin, A.T. Fomenko. – M. Nauka, 1991. – 173 s.
13. Fedorov E.S. Simmetrіya na ploskosti [Tekst] / E.S. Fedorov // Zapiski Imperatorskogo S.-Peterburgskogo mineralogicheskogo obschestva. – 1891. – seriya 2. – vyp. 28. – S. 345–390.
14. Coxeter H. S. M. Regular Polytopes. // New York: Dover Publications Inc., 1973.
15. Gabbrielli R., Jiao Y., and Torquato S. Families of tessellations of space by elementary polyhedra via retessellations of face-centered-cubic and related tilings// Phys. Rev. E., 2012, Vol. 86, iss. 4, 041141 - DOI: 10.1103/PhysRevE.86.041141
16. Polya G. Über die Analogie der Kristallsymmetrie in der Ebene // Zeitschrift für Kristallographie (in German). 60 (1–6): 278–282. DOI:10.1524/zkri.1924.60.1.278. S2CID 102174323.
17. Protasov, V.Yu. Surface dimension, tiles, and synchronizing automata // SIAM Journal on Mathematical Analysis, 2020, 52(4), pp. 3463–3486
18. Rao M. Exhaustive search of convex pentagons which tile the plane // https://arxiv.org/pdf/1708.00274.pdf [Elektronnyy resurs]
19. Schoen, A. H. Infinite periodic minimal surfaces without self-intersections // NASA Technical Note, 1970, available on https://ntrs.nasa.gov/api/citations/19700020472/downloads/19700020472.pdf
20. Sommerville D. M. Y. Space-filling Tetrahedra in Euclidean Space / D. M. Y. Sommerville // Proceedings of the Edinburgh Mathematical Society, 1922, Vol. 41, pp 49-57 - DOI: 10.1017/S001309150007783X
21. Stewart I. Mathematical Recreations: Cone with a Twist // Scientific American, 1999, Vol. 281 (4) pp. 116–117.
22. Weisstein E. W. Steinmetz Solid. // From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SteinmetzSolid.html